• Title/Summary/Keyword: Ammonium ion selective

Search Result 35, Processing Time 0.022 seconds

Preparation of Quaternary Ammonium Salt Derivatives Supported on Silica gel and Its Ion Exchange Characteristics (실리카겔에 담지된 4급암모늄염 유도체의 합성 및 이온교환 특성)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The ion exchangers supported on silica gel containing primary, secondary, or tertiary amine groups show a behaviour that is weakly acidic, while the quaternary salts are strongly acidic. These properties change according to the hydrophilicities of the modifier functional groups. Ammonium salt derivatives supported on silica gel were prepared from silica modified with 3-Aminopropyltriethoxysiliane and N-3-(Trimethoxysilyl)propylehtylene diamine. The preparation and the ion exchange properties of two systems were discussed. Two systems have different hydrophilicities and contain ammonium chloride derivatives of 3-amminopropyltriethoxysilane and N-3-(triehtoxysilyl)propyl ethylene diamine supported on silica gel, $SA^+/Cl^-$ and $SA^+/Cl^-$, respectively. The high affinity to perchlorate ion presented by the $SA^+/Cl^-$ through the equilibrium studies of ion exchange led us to its application as an ion selective electrode for the perchlorate ion. The determination of the perchlorate ion in the presence of other anions and in complexes is very difficult. Few analytical methods are available and most of them are indirect. Both materials showed potential use as an ion exchanger; they are thermically stable, achieve equilibrium rapidly in the presence of suitable exchanger ions, and are easily recovered.

Fabrication of Perchlorate Ion Selective PVC Membrane Electrode (과염소산 이온선택성 PVC막전극 제작)

  • 우인성;안형환;강안수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.298-305
    • /
    • 1998
  • The PVC membrane electrode for measuring perchlorate ion was developed by incorporating various quaternary ammonium sallts. The effect of chemical structure, the content of active material, the kind of plasticizers, and the membrane thickness on the electrode characteristic such as the linear response range and Nernstian slope of the electrode were studied. It was obtained that the effect of the chemical structure of an active material on the electrode characteristics was improved with increasing the alkyl chain length of the quarternary ammonium salts in the ascending order of Aliquat 336P, TOAP, TDAP, and TDDAP. The optimum membrane composition was 9.09wt% of TDDAP, 30.3wt% of PVC, and 60.6wt% of plasticizer(DBP). And the optimum membrane thickness was 0.45mm at this composition. Under the above condition, the linear response range was $10^{-1}~1.2\times10^{-6}$M, and the detection limit was $5.1\times10^{-7}$M with the Nernstian slope of 57mV/decade of activity of perchlorate ion. The electrode potential was stable within the pH range from 4 to 11. The selectivity coefficient was as shown below: $SCN^->I^-NO_3^->Br^->ClO_3^->F^->Cl^->SO_4^{2-}$

  • PDF

Tetrahydrofuran-Containing Crown Ethers as Ionophores for NH+4-Selective Electrodes

  • Jin, Hua-Yan;Kim, Tae-Ho;Kim, Jin-Eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • The ammonium ion-selective electrodes ($NH^+_4$-ISEs) based on the tetrahydrofuran(THF)-containing-16-crown-4 derivatives,1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^1$) and 5,10,15,20,-tetramethyl-1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^2$), were prepared and the electrode characteristics were tested. The conditioned $NH_4^+$-ISEs (E1) based on $L^1$ with TEHP as a plasticising solvent mediator gave best results with near-Nernstian slope of 53.9 mV/decade of activity, detection limit of $10^{-4.9}$ M, and enhanced selectivity coefficients for the $NH^+_4$ ion with respect to an interfering $K^+$ ion (log $K^{pot}_{NH_4^+,K^+}$ = -1.84). This result was compared to other ammonium ionophores reported previously, for example, that of nonactin (log $K^{pot}_{NH_4^+,K^+}$ = -0.92). The proposed electrode showed no significant potential changes in the range of 3.0 < pH < 9.0.

Selective adsorption of ammonium ion via cobalt-based Prussian blue analogue (코발트 기반 프러시안블루 유사체를 이용한 수중 암모늄 이온의 선택적 흡착)

  • Tae Hwan Kim;Narges Dehbashi Nia;Yeo-Myeong Yun;Tae-Hyun Kim;Yuhoon Hwang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.95-107
    • /
    • 2024
  • This study proposes the use of a cobalt-based Prussian blue analogue (Co-PBA; potassium cobalt hexacyanoferrate), as an adsorbent for the cost-effective recovery of aqueous ammonium ions. The characterization of Co-PBA involved various techniques, including Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, nitrogen adsorption-desorption analysis, and zeta potential. The prepared Co-PBA reached an adsorption equilibrium for ammonium ions within approximately 480 min, which involved both surface adsorption and subsequent diffusion into the interior. The isotherm experiment revealed a maximum adsorption capacity of 37.29 mg/g, with the Langmuir model indicating a predominance of chemical monolayer adsorption. Furthermore, the material consistently demonstrated adsorption efficiency across a range of pH conditions. Notably, adsorption was observed even when competing cations were present. Co-PBA emerges as a readily synthesized adsorbent, underscoring its efficacy in ammonium removal and selectivity toward ammonium.

Development of a Solid State Ion Sensor Module for Analysis of Hydroponic Nutrients (수경재배용 배양액의 이온성분 분석을 위한 고체형 센서 모듈 개발)

  • Kim, G.;Lee, S.B.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.348-353
    • /
    • 2007
  • A solid state ion sensor module has been developed and evaluated for hydroponic nutrients analysis. The sensor module consisted of five ion-selective electrodes (ISE) fabricated by screen-printing technology. The electrochemical responses of ion sensors for nitrate, ammonium, potassium, calcium, and pH were measured with specially designed 7-channel low voltage signal transducers. The analytical characteristics of the sensors were comparable with those of conventional ISE sensors. The solid state ion sensors exhibit linear relationships over five concentration decades. Detection limit of the sensors were $5.6{\times}10^{-5}{\sim}1.6{\times}10^{-7}M$ depends on ions. Performance test results showed that relative errors of measured ion concentrations were less than 5% for $NO_3{^-},\;K^+,\;Ca^{2+}$ ion, and pH. The concentration of $NO_3{^-},\;NH_4{^+},\;K^+,\;Ca^{2+}$, and pH ion in standard solution and nutrient solutions could be determined by direct potentiometric measurements without any conditioning before measurements.

Development of Ion-Selective Electrodes for Agriculture

  • Yang-Rae Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.153-153
    • /
    • 2022
  • There is a growing need to develop ion sensors for agriculture. As a result, several technologies have been developed, such as colorimetry, spectrophotometry, and ion-selective electrode (ISE). Among them, ISE has some advantages compared to others. First, it does not require pre-treatment processes and expensive equipment. Second, it is possible for the portable detection system by introducing small-sized electrodes. Finally, real-time and multiple detections of several ions are pursued. It is well-known that N, P, and K nutrients are critical for crop growth. With the development of agriculture techniques, the importance of soil nutrient analysis has attracted much attention for cost-effective and eco-friendly agriculture. Among several issues, minimizing the use of fertilizers is significant through quantitative analysis of soil nutrients. As a result, it is highly important to analyze certain nutrients, such as N (ammonium ion, nitrate ion, nitrite ion), P (dihydrogen phosphate ion, monohydrogen phosphate ion), and K (potassium ion). Therefore, developing sensors for accurate analysis of soil nutrients is highly desired. n this study, several ISEs have been fabricated to detect N, P, and K. Their performance has been intensively studied, such as sensitivity, selectivity coefficient, and concentration range, and compared with commercialized ISEs. In addition, preliminary tests on the in-situ N, P, and K monitoring have been conducted inside the soil.

  • PDF

Polymeric Membrane Cesium-Selective Electrodes Based on Quadruply-bridged Calix[6]arenes

  • Choe, Eun Mi;O, Hye Jin;Go, Seung Hwa;Choe, Yong Guk;Nam, Gye Chun;Jeon, Seung Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1345-1349
    • /
    • 2001
  • New quadruply-bridged calix[6]arenes (I-V) have been studied as cesium selective ionophores in poly(vinyl chloride) (PVC) membrane electrodes. PVC membranes were prepared with dioctyl sebacate (DOS) or 2-nitrophenyl octyl ether (o-NPOE) as the sol vent mediator and potassium tetrakis(p-chlorophenyl)borate as the lipophilic salt additive. These ionophores produced electrodes with near-Nernstian slope. The selectivity coefficients for cesium ion with respect to alkali, alkaline earth and ammonium ions have been determined. The lowest detection limit (logaCs+ = -6.3) and the higher selectivity coefficient (logkpotCs+,Rb+ = -2.1 by SSM, -2.3 by FIM for calix[6]arene I) for Cs+ have been obtained for membranes containing quadruply-bridged calix[6]arenes (I, Ⅱ, Ⅲ), which have no para t-butyl substituents on the bridging benzene ring.

Potentiometric Determination of Postssium Ion Using 15-Crown-5 Derivatives with Anthracene for the Selective Material (안트라센을 포함하는 15-Crown-5 유도체를 이온선택성 물질로 이용한 칼륨이온의 전위차법 정량)

  • Bae, Zun-Ung;Lee, Sang-Bong;Chang, Seung-Hyun;Kim, Ui-Rak
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • Newly synthesized 15-Crown-5 derivatives including anthracene were used as neutral carriers for ion selective electrodes to determine potassium ion by potentiometry. Among the five neutral carriers studied in this work, N-(4'-benzo-15-crown-5-ether)-anthracene-9-imine was found to be the best in terms of selectivity and stability. The optimal composition of ion selective membrane was 1.0, 33.0 and 66.0 wt% for neutral carrier, PVC and plasticizer, resperctively. Addition of KTpCIPB used as a lipophilic additive improved the Nernst slope and the selectivity of potassium ion over alkali and alkaline earth metals. Especially, the selectivity of potassium ion over ammonium ion was remarkably good ($logK^{pot}_(K^+,NH_4^+}$=-2.59). The response time was also excellent ($t_{100}$=5sec) and continuous use of this electrode for three weeks has not changed the selectivity and analytical characteristics.

  • PDF

Monitoring of Nitrogen Ion in Nitrifying Biofilm using an Ion Selective Microelectrode (이온선택성 미소전극을 이용한 질산화 생물막내의 질소 이온의 농도 모니터링)

  • Seon, Ji-Yun;Byun, Im-Gyu;Lee, Tae-Ho;Park, Tae-Joo
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • An ion selective microelectrode (ISME) was fabricated to measure concentrations of ammonium (${NH_4}^+$-N) and nitrate (${NO_3}^-$-N) according to the depth of nitrifying biofilm. The limits of detectability and validity of results were investigated to evaluate the ISME. The electromotive force (EMF) was directly proportional to the ion concentration, and average detection limits of ${NH_4}^+$ and ${NO_3}^-$ ISME were $10^{-5.14}$ and $10^{-5.18}$ M, respectively. The concentrations of ${NH_4}^+ $-N and ${NO_3}^-$-N in various depths on the nitrifying biofilm were measured by the ISME. When a modified Ludzack-Ettinger (MLE) process was operated at an HRT of 6 h, concentration gradients of ${NH_4}^+$-N in the bulk solution and biofilm at depths of $100\;{\mu}m$ decreased by $70\;{\mu}M$, while ${NO_3}^-$-N increased by $101\;{\mu}M$ and remained constant thereafter. At an HRT of 4 h, concentration gradients of ${NH_4}^+$-N at depths of $500\;{\mu}m$ decreased by $160\;{\mu}M$ and ${NO_3}^-$-N increased by $162;{\mu}M$ and remained constant thereafter. As HRT decreased, the concentration gradients of ${NH_4}^+$-N and ${NO_3}^-$-N between bulk solution and biofilm was higher due to the increase of nitrogen load. Also, the concentration gradients of the ${NH_4}^+$-N and ${NO_3}^-$-N of biofilm in the second aerobic tank were lower than those of the first aerobic tank, suggesting differences of nitrogen load and concentrations of DO between the first and second aerobic tank.

Validation of analysis of urinary fluoride by ion selective electrode method (이온선택전극법에 의한 소변 중 불소 이온 분석법 검증)

  • Lee, Mi-Young;Yoo, Kye-Mook
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.333-338
    • /
    • 2014
  • A simple and sensitive analytical method for fluoride in urine by ion selective electrode (ISE) method was presented. Traditional buffer for fluoride determination using ISE is acetate-based one. Researchers have pointed out some drawbacks of the buffer for fluoride ISE analysis, and some other buffers including citrate-ammonium buffer and MES buffer have been studied for accurate determination of fluoride in urine here. These buffers provided promising results in environmental field, and this author focused on overcoming the interference of co-existing aluminium. The results show that MES-CyDTA buffer gave the best recovery with accuracy of 95-97.5% and precision of 1.9-7.9% for reference sample of 1.8-7.8 mg/L fluoride in urine, with smaller amount of samples and shorter analysis time compared with the traditional method which used acetate buffer. The method was applied to field samples, and which showed urinary of $0.98{\pm}0.38mg/g$ creatinine for workers in electric cable manufacturing factory (n=15) and $0.59{\pm}0.30mg/g$ creatinine for non-exposed workers (n=12).