• Title/Summary/Keyword: Ammonium evaporation

Search Result 13, Processing Time 0.022 seconds

A Modeling Study on Aerosol Property Changes due to Sea-Salts (해염성분에 의한 에어로솔 물성변화 모사연구)

  • 김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.113-120
    • /
    • 2000
  • Effects of sea-salts on the properties of aerosol collected in a coastal region were studied by applying a gas-particle equilibrium model SCAPE to the measurement data from Korea Cheju Island in summer 1994. It was found that the observed higher ammonium concentrations in fine particles (PM2.5) than in TSP were caused by forced evaporation of ammonium in coarse fraction of aerosol by sea-salts and the degree of evaporation was quantified through an application of SCAPE. By subtracting the sea-salt fraction from the measured concentra-tions the changes of aerosol property were also studied. The concentrations of nitrate at both TSP and PM2.5 decreased when alkaline sea-salt fraction was removed from the measured data. Estimates of aerosol acidity increased for most samples with sea salt loadings, However in some cases with high mass fractions of sea-salt components the aerosol acidity of PM2.5 decreased slightly. This is though to be related with the formation of solid salt with the removal of sea-salts.

  • PDF

Manufacture Technology of Monoammonium phosphate from LCD Waste Acid (LCD 제조공정의 혼합폐산으로부터 일인산암모늄 제조 기술)

  • Lee, Ha-Young;Lee, Sang-Gil;Park, Sung-Kook;Kim, Ju-Han;Kim, Ju-Yup;Kim, Jun-Young
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.253-257
    • /
    • 2009
  • The waste solution discharged form the LCD(Liquid Crystal Display) manufacturing process contains phosphoric acid, nitric acid, acetic acid and metal ions such Al and other impurities. In this study, vacuum evaporation and diffusion dialysis was developed to commercialize an efficient system for recovering the high-purity phosphoric acid and manufacturing monoammonium phosphate. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. Also, by diffusion dialysis, about 97.5% of Al was removed. Monoammonium phosphate was manufactured from purified phosphoric acid and ammonium hydroxide. In order to get the optimum manufacturing condition, the molar ratio of ammonium hydroxide and phosphoric acid, pH and temperature was controlled. Using this optimum condition, we obtained the recovery rate of monoammonium phosphate of about 90%.

Study on purification and extraction of nitrate salts from waste scrubbing liquid of de-SOx/de-NOx (탈질/탈황 폐 세정액으로부터 질산염 추출 및 정제 연구)

  • Kim, Woo-Ram;Jo, Young-Min;Lee, Heon-Seok;Oh, Soo-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • IMO to issue some restricted maritime legislation for reducing the adverse environmental impacts arising from such ship exhaust emissions. According to the IMO policy, every ship entering the Baltic SECAs has to equip the gas cleaning scrubber. The discharged waste solution by gas cleaning scrubber contains many types of salts, which to recover some valuable materials before disposal. This study try to achieve valuable salts including AN and AS throughout a few process such as selective organic solvents salting out, low temperature extraction and thermal evaporation. Amongst them, Thermal evaporation with repetition extraction using inorganic solvent was the most optimum to purify the extracted AN. This valuable salt was evaluated by Elemental analysis and Differential scanning calorimetry.

The Characteristics of Drinking Groundwater Quality in Chung Cheong Nam Do (충청남도 음용지하수 수질의 특성)

  • 김흥락;한운수;박혜숙
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.721-727
    • /
    • 2002
  • The characteristics of drinking groundwater quality at Chung Cheong Nam Do was analyzed by investigating the 3,086 groundwater data which were carried out the water quality inspection from Jan. 1998 to Dec. 1998. It was found that all the mean concentration of items was not over the drinking water quality standard except Zn at Yeongee area. The highest mean concentration of nitrate was $8.2 mg/{\ell}$ at Hongsung area. And the mean concentrations of nitrate and ammonium at Sucheon, Yesan, Yeongee were relatively higher. It was considered that the groundwater of that area was contaminated by breeding livestock as farm pollutants. The mean concentrations of chloride, hardness and evaporation residual at coastal regions were higher than inland regions. Especially the mean concentration of chloride was 2.5 times higher. It was considered that the groundwater at coastal regions was affected by seawater. It was found that the correlation between Fe and Mn was relatively high(r=0.776) and the correlation between hardness and evaporation residual was very high(r=0.983). The rainfall series and detection rate of E-coli had the hydrologic persistence. The correlation between the detection rate and rainfall series over 150 mm was very high (r=0.9146). Therefore it is surely required to control the groundwater sanitation in the rainy season.

Comparison of the PM10 Concentration in Different Measurement Methods at Gosan Site in Jeju Island (제주도 고산 측정소의 미세먼지 측정방법에 따른 질량농도 비교)

  • Shin, So-Eun;Kim, Yong-Pyo;Kang, Chang-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.4
    • /
    • pp.421-429
    • /
    • 2010
  • The reliability of the measurement of ambient trace species is an important issue, especially, in background area such as Gosan in Jeju Island. In a previous episodic study, it was suggested that the PM10 measurement result by the gravimetric method(GMM) was not in agreement with the result by the ${\beta}$-ray absorption method(BAM). In this study, a systematic comparison was carried out for the data between 2001 and 2008 at Gosan(GMM and BAM) and Jeju city (BAM) which is near to Gosan. It was found that at Gosan the PM10 concentration by BAM was higher than GMM and the correlation between them was low. The BAM results at Gosan and Jeju city showed similar trend implying the discrepancy at Gosan was not caused by instrumental problem of the BAM at Gosan. Based on the previous studies two probable reasons for the discrepancy are identified; (1) negative measurement error by the evaporation of volatile ambient species at the filter in GMM such as nitrate and ammonium and (2) positive error by the absorption of water vapor during measurement in BAM. There was no heater at the inlet of BAM at Gosan during the sampling period. Based on the size-segregated measurement data, it was identified that the evaporation error was minor, if any. The relationship between the two methods did not vary with the ambient relative humidity. Thus, at present, it is not clear why the discrepancy had been occurring and when using the PM10 data at Gosan, one should be aware the possible errors.

The Extraction of Metal Contaminants using Supercritical CO2 (초임계이산화탄소를 이용한 방사성 금속이온 추출)

  • Ju, Minsu;Kim, Jung-Hoon;Kang, Se-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.660-667
    • /
    • 2016
  • Conventional decontamination methods utilize water-based systems, which generate high amounts of secondary wastes. Herein, we describe an environmentally benign decontamination method using liquid and supercritical $CO_2$. The use of $CO_2$ as a solvent affords effective waste reduction by its ability to be recycled, thereby leaving be hind only the contaminants upon its evaporation. In this study, a $CO_2$ solution process was assessed using t-salen(t-butylsalen), DC18C6 (dicyclohexano-18Crown6), 8-HQN(8-hydroxyquinoline), NEt4PFOSA(perfluoro-1-octanesulfonic acid tetra-ethyl ammonium salt), and NEt4PFOA(pentadecafluorooctanoic acid ammonium salt) to extract spiked radioactive contaminants(Nb,Zr,Co,Sr) from an inert sample matrix, namely filter paper. With the static extraction method, Sr was extracted with a maximum extraction rate of 97%, and Nb was extracted with a maximum extraction rate of 75%. Additionally, we were also able to extract Co and Zr with maximum extract ion ratesof 73% and 64%, respectively.

Preparation of Highly Porous Poly(d,l-lactic-co-glycolic acid) (PLGA) Microspheres (다공성 PLGA 마이크로입자 제조법의 최적화 연구)

  • Park, Hong-Il;Kim, Huyn-Uk;Lee, Eun-Seong;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.167-171
    • /
    • 2009
  • Poly(lactic-co-glycolic acid) (PLGA) microspheres have been a useful tool as a controlled drug delivery system for peptides and proteins. Recently, porous microspheres have gained great attention as inhalation drug delivery system due to their low aerodynamic densities. Here, we report highly porous PLGA microspheres, which were prepared by using a single o/w emulsification/solvent evaporation method. Two types of porogen, i.e., (i) extractable Pluronic F127 and (ii) gas foaming salt of ammonium bicarbonate, were used to induce pores on the surface of PLGA microspheres. The respective preparation conditions on dp/cp ratio and porogen concentration were determined by the previous preliminary experiments, and other preparation factors were further optimized on the basis of PLGA Mw and porogen type. The morphological features examined by scanning electron microscope (SEM) show these porous microspheres have highly porous surface structure with a diameter range of 20${\sim}$30 ${\mu}$m. These highly porous PLGA microspheres, which have much lower density, would be a practical aerosol system for pulmonary drug delivery.

Recovery of Tungsten from WC-Co Hardmetal Sludge by Aqua regia Treatment (WC-Co 초경합금(超硬合金) 슬러지로부터 왕수처리(王水處理)를 이용한 텅스텐의 회수(回收))

  • Kim, Ji-Hye;Kim, Eun-Young;Kim, Won-Back;Kim, Byung-Su;Lee, Jae-Chun;Shin, Jae-Soo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2010
  • A fundamental study was carried out to develop a process for recycling tungsten and cobalt from WC-Co hardmetal sludge generated in the manufacturing process of hardmetal tools. The complete extraction of cobalt and simultaneous formation of tungstic was achieved by treating the sludge using aqua regia. The effect of aqua regia concentration, reaction temperature and time, pulp density on cobalt leaching and tungstic acid formation was investigated. The complete leaching of cobalt was attained at the optimum conditions: 100 vol.% aqua regia concentration, $100^{\circ}C$ temperature, 60 min. reaction time and 400 g/L pulp density. A complete conversion of tungsten carbide of the sludge to tungstic acid was however, obtained at the pulp densities lower than 150 g/L under the above condition. The progress of reaction during the aqua regia treatment of the sludge was monitored through the XRD phase identification of the residue. The metallic impurities in the tungstic acid so produced could be further removed as insoluble residues by dissolving the tungsten values in ammonia solution. The ammonium paratungstate($(NH_4)_{10}{\cdot}H_2W_{12}O_{42}{\cdot}4H_2O$) of 99.85% purity was prepared from the ammonium polytungstate solution by the evaporation crystallization method.

A study on the manufacture of humidity sensors using layered silicate nanocomposite materials (층상 실리케이트계 나노복합 소재 적용 습도센서 제조에 관한 연구)

  • Park, Byoung-Ki
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, evaluated the properties of layered silicate-based nanocomposite sensitive film. For the fabrication of nanocomposite materials, we selected organically modified layered silicate materials, specifically Cloisite® and Bentone®, which were treated with quaternary ammonium salts. The impedance of the humidity sensors containing organically modified montmorillonite/hectorite clay decreased with increasing relative humidity(RH%). In the case of the Cloisite® humidity sensor exhibited slightly better impedance linearity and hysteresis compared to the Bentone® 38 humidity sensor. Additionally the impedance of the sensor with Bentone® 38 addition was the lowest when compared to the Cloisite®-modified sensor. Comparing the Cloisite®-modified sensors individually, we observed different moisture absorption characteristics based on the hydrophilic properties of the organic-treated materials. The response speed of Cloisite® 93A tended to be slower due to differences in moisture evaporation rates influenced by the hydrophilic organic components. Based on these results, moisture barriers utilizing organically modified layered silicate materials may exhibit slightly lower moisture absorption properties compared to conventional polymer-based moisture barriers. However, their excellent stability, simple processing, and cost-effectiveness make them suitable for humidity sensor applications.

Ionic Compositions and Carbonaceous Matter of PM2.5 at Ieodo Ocean Research Station (이어도 해양과학기지 PM2.5의 이온과 탄소 조성 특성)

  • Han, Jihyun;Kim, Jahan;Kang, Eunha;Lee, Meehye;Shim, Jae-Seol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.701-712
    • /
    • 2013
  • The purpose of this study is to determine concentrations and compositions of $PM_{2.5}$ and their characteristic variations at Ieodo Ocean Research Station in the East China Sea and to examine the influence of air pollutants transported from Asia continents. $O_3$ and meteorological parameters were measured since June 2003 and $PM_{2.5}$ filter samples were collected from June 2004 to June 2008. In total, 244 samples were analyzed for water soluble ions and carbonaceous compounds. The mean mass concentration of $PM_{2.5}$ and $O_3$ were $21.8{\pm}14.9{\mu}g/m^3$ and $51.6{\pm}16.1$ ppb, respectively. The average concentrations (mass fractions) of sulfate and ammonium were $6.26{\mu}g/m^3$ (28.74%) and $1.59{\mu}g/m^3$ (7.31%), respectively. Nitrate was considered to be lost through evaporation due to long stay at the station. The mean concentrations of EC and OC were $1.01{\mu}g/m^3$ and $2.34{\mu}g/m^3$, respectively, from June 2006 to June 2008. The average OC/EC ratio was 2.31. The organic matter converted from OC by multiplying 2.1 and elemental carbon constituted 22.60% and 4.66% of $PM_{2.5}$ mass, respectively.