• Title/Summary/Keyword: Ammonification

Search Result 25, Processing Time 0.029 seconds

Studies on the Volatilization of Ammonia in Relation to the Amount of Nitrogen added (토양의 반응과 질소(窒素)의 시용량(施用量)에 따른 암모니아의 휘산(揮散))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 1980
  • In order to learn about the volatilization of ammonia in relation to the amont of nitrogenous fertilizer, a laboratory experiment incubated between $35-40^{\circ}C$ for seven days, applying with 3.75mg N, 7.5mg N, and 11.25mg N in urea form, had been carried out. The result obtained are as follows : 1. As the amont of urea increases, the volatilization of ammonia enhanced. The enhancement of the volatilization of ammonia showed a close relationship with the pH raise of soil which is resulted from the formation of ammonia in soil. 2. Over liming decreased the volatilization of ammonia depressing the hydrolysis of urea and the ammonification of soil nitrogen. This tendency was far more pronounced when the pH of soil exceed 8.0.

  • PDF

Keratinase Production by Recalcitrant Feather Degrading Pseudomonas Geniculata and Its Plant Growth Promoting Activity (난분해성 우모분해 Pseudomonas geniculata에 의한 케라틴 분해효소 생산 및 식물성장 촉진 활성)

  • Go, Tae-Hun;Lee, Sang-Mee;Lee, Na-Ri;Jeong, Seong-Yun;Hong, Chang-Oh;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1457-1464
    • /
    • 2013
  • We investigated the optimal conditions for keratinase production by feather-degrading Pseudomonas geniculata H10 using one variable at a time (OVT) method. The optimal medium composition and cultural condition for keratinase production were determined to be glucose 0.15% (w/v), beef extract 0.08% (w/v), $KH_2PO_4$ 0.12% (w/v), $K_2HPO_4$ 0.02% (w/v), NaCl 0.07% (w/v), $MgSO_4{\cdot}7H_2O$ 0.03%, $MgCl_2{\cdot}6H_2O$ 0.04% along with initial pH 10 at 200 rpm and $25^{\circ}C$, respectively. The production yield of keratinase was 31.6 U/ml in an optimal condition, showing 4.6-fold higher than that in basal medium. The strain H10 also showed plant growth promoting activities. This strain had ammonification activity and produced indoleacetic acid (IAA), siderophore and a variety of hydrolytic enzymes such as protease, lipase and chitinase. Therefore, this study showed that P. geniculata H10 could be not only used to upgrade the nutritional value of feather wastes but also useful in situ biodegradation of feather wastes. Moreover, it is also a potential candidate for the development of biofertilizing agent applicable to crop plant soil.

Production of HCN, Weed Control Substance, by Pseudomonas koreensis and its Plant Growth-Promoting and Termiticidal Activities (Pseudomonas koreensis에 의한 잡초제어활성물질인 HCN 생성과 이 균주의 식물성장 촉진 및 흰개미 살충 활성)

  • Yoo, Ji-Yeon;Jang, Eun-Jin;Park, Soo-Yeun;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.771-780
    • /
    • 2018
  • To develope a microbial weed control agent, HCN-producing bacteria were isolated, and their characteristics were investigated. A selected strain of WA15 was identified as Pseudomonas koreensis by morphological, cultural, biochemical and 16S rRNA gene analyses. The conditions for HCN production was investigated by a One-Variable-at-a-Time (OVT) method. The optimal HCN production conditions were tryptone 1%, glycine 0.06%, NaCl 1%, and an initial pH and temperature of 5.0 and $30^{\circ}C$, respectively. The major component for HCN production was glycine. Under optimal conditions, HCN production was about 3 times higher than that of the basal medium. The WA15 strain had physiological activities, such as indoleacetic acid that was associated with the elongation of plant roots and siderophore and ammonification inhibiting fungal growth, and produced hydrolytic enzymes, such as cellulase, pectinase and lipase. The strain was able to inhibit the growth of phytopathogenic fungi, such as Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, by the synergistic action of volatile HCN and diffusible antimicrobial compounds. A microscopic observation of R. solani that was teated with the WA15 strain showed morphological abnormalities of fungal mycelia, which could explain the role of the antimicrobial metabolites that were produced by the WA15 strain. The volatile HCN produced by the WA15 strain was also found to have insecticidal activity against termites. Our results indicate that Pseudomonas koreensis WA15 can be applied as a microbial agent for weed control and also as a termite repellent. Furthermore, it could be applied as a microbial termiticidal agent to replace synthetic insecticides.

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent (잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성)

  • Choi, Seunghoon;Yoo, Ji-Yeon;Park, SungJin;Park, MinJoo;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.925-933
    • /
    • 2020
  • To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Reduced use of nitrogen fertilizer through retarded hydrolysis of urea by pyroligneous acid for Chinese cabbage cultivation (배추 재배 시 목초액에 의한 요소 가수분해 지연을 통한 질소비료 절감 효과)

  • Lee, Joo-Kyung;Park, Hyun Jun;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Urea is one of the most common nitrogen fertilizer, but nitrogen use efficiency by crop is low because of rapid hydrolysis of urea and loss of nitrogen in environments. Therefore, it is important to control the nitrogen release from nitrogen fertilizers. In this study, pyroligneous acid (PA) was used as a mean to inhibit urease in soil and prevent excessive nitrogen release from urea. Active ingredient in PA (AI) inhibited ammonification of urea in soil by reducing extracted ammonium nitrogen at 79.7% compared to the soil without PA. In order to evaluate the effect of PA on fertilization efficiency of urea, Chinese cabbage (Brassica campestris var. Pekinensis) was cultivated in soil treated with urea and PA both in pot and field. For PA treatment, half amount of urea was used compared to the amount of urea conventionally applied to Chinese cabbage. The PA treatment with half amount of urea resulted in similar Chinese cabbage biomass to the conventional urea application. Nitrogen concentration in Chinese cabbage was less in PA treatment indicating that Chinse cabbage effectively used nitrogen. Consequently, fertilization of urea with PA will reduce amount of fertilizer and frequency of application.

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF

Studies on the Denitrification in the Submerged Paddy Soil -1. The Denitrification Rates Upon the Different Levels of Nitrogen Fertilizer in Sandy Soil (논토양(土壤)의 탈질작용(脫窒作用)에 관(關)한 연구(硏究) -제(第) 1 보(報). 사질답토양(砂質畓土壤)에서 질소시비량(窒素施肥量) 차이(差異)가 탈질(脫窒)에 미치는 영향(影響))

  • Lee, Sang Kyu;Kim, Seung Hwan;Park, Jun Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.94-98
    • /
    • 1985
  • A laboratory experiment was conducted to find out the denitrification rate upon the different levels of nitrogen fertilizer in submerged sandy soil. The results obtained were summarized as follows: 1. The highest denitrification rate was observed at 25 days after incubation. The amount was reached at 1830 ug/100g soil for 20mg nitrogen was applied in 100g soil. 2. Increases of fertilizer nitrogen was enhanced the rate of ammonification and nitrification during the incubation time. 3. Deep correlation was observed between the denitrification capacities which was determined as nitrous oxide and Mitchaelis-Menten kinetic with relation to nitrate concentration. More higher denitrification rates were observed in Mitchaelis-Menten kinetic than dentrification rate with determined as nitrous oxide. 4. A Zero order (with relation to nitrate concentration) kinetic model for denitrification was presented in this experiment condition to illustrate the variability of nitrous oxide concentrations in the submerged soil atmosphere.

  • PDF

Comparison of Nitrogen Removal in a Horizontal Subsurface-Flow Wetland Purifying Stream Water with and without Litter Layer on its Surface (하천수를 정화하는 수평흐름 여과습지의 표면 잔재물층 유무에 의한 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.1
    • /
    • pp.111-122
    • /
    • 2009
  • Abatements of TN and ${NO_3}^-$-N in a horizontal subsurface-flow wetland with litter layer on its surface were compared with those without one. The wetland was constructed in 2001 on floodplain of the Gwangju Stream which flows through Gwangju City in Korea. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm was filled with crushed granites (15~40mm in diameter) and a middle layer of 10cm had pea pebbles. An upper layer of 5cm contained coarse sands. Reeds (Phragmites australis) growing in natural wetlands were transplanted on its surface. Water of the stream was channelled into the wetland by gravity flow and its effluent was discharged back into the stream. Average Litter layer of 12.2cm was formed on its surface in 2007. The layer and above-ground parts of reeds were eliminated in April 2008. Volumes and water quality of influent and effluent of the wetland were analyzed from May to November in 2007 and 2008, respectively. Inflow into the wetland both in 2007 and 2008 averaged approximately 40$m^3$/day and hydraulic residence time both in 2007 and 2008 was about 1.5days. Influent TN concentration in 2007 and 2008 averaged 3.96 and 3.89mg/L, respectively and average influent ${NO_3}^-$-N concentration in 2007 and 2008 was 2.11 and 2.05mg/L, respectively. With a 0.05 significance level, influent concentrations of TN and ${NO_3}^-$-N, temperatures and pH of effluent, and heights and stem numbers of reeds showed no difference between the wetland with litter layer and without one. TN retention in the wetland with litter layer and without one averaged 64,76 and 54.69%, respectively and ${NO_3}^-$-N removal averaged 60.83 and 50.61%, respectively. Both TN and ${NO_3}^-$-N abatement rates in the wetland with litter layer were significantly high (TN abatement: p<0,001, ${NO_3}^-$-N abatement: p=0.001) when compared with those without one. The subsurface-flow wetland having litter layer on its surface was more efficient for TN and ${NO_3}^-$-N removal.