• Title/Summary/Keyword: Ammonia synthesis

Search Result 213, Processing Time 0.024 seconds

Recent Research Trends of Exploring Catalysts for Ammonia Synthesis and Decomposition (암모니아 합성 및 분해를 위한 촉매 탐색의 최근 연구 동향)

  • Jong Yeong Kim;Byung Chul Yeo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.487-495
    • /
    • 2023
  • Ammonia is either a crucial resource of fertilizer production for solving the food problem of mankind or an important energy source as both an eco-friendly hydrogen carrier and a carbon-free fuel. Therefore, nowadays ammonia synthesis and decomposition become promising. Then, a catalyst is required to effectively perform the ammonia synthesis and decomposition. In order to design high-performing as well as cheap novel catalysts for ammonia synthesis and decomposition, it is necessary to test huge amount of catalyst candidates, but it is inevitably time-consuming and expensive to search and analyze using only traditional approaches. Recently, new methods using machine learning which is one of the core technologies of the 4th industrial revolution that can quickly and accurately search high-performance catalysts has been emerging. In this paper, we investigate reaction mechanisms of ammonia synthesis and decomposition, and we described recent research and prospects of machine learning-driven methods that can efficiently find high-performing and economical catalysts for ammonia synthesis and decomposition.

Development of Synthesis Process for Ammonia Borane using NaBH4 as the Hydrogen Storage Materials (NaBH4를 이용한 암모니아 보란 수소 저장 소재 합성 공정 개발)

  • Choi, Ho Yun;Park, Sung Jin;Jung, Sung Jin;Baek, Jong Min;Song, Han Dock;Kim, Jong Soo;Lee, Kun Jong;Kim, Young Lae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.475-481
    • /
    • 2014
  • Ammonia borane ($NH_3BH_3$), as a source material for energy generation and hydrogen storage, has attracted growing interest due to its high hydrogen content. We have investigated the synthesis of ammonia borane from sodium borohydride ($NaBH_4$) and ammonium chloride ($NH_4Cl$) utilizing a low-temperature process. From our results, we obtained a maximum synthetic yield of 98.2% of ammonia borane complex. The diammoniate diborane (DADB) was detected in about 5~10mol% with in the solid ammonia borane by solid-state $^{11}B$-NMR analysis. The synthesized solid ammonia borane products were studied to characterize hydrogen release upon thermal dehydrogenation.

Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas (암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성)

  • Lee, Sunwoo;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.782-785
    • /
    • 2013
  • Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.

Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era (청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향)

  • Weonjun Jeong;Jintae Kim;Kanghee Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.71-93
    • /
    • 2024
  • Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable of serving as a key facilitator for high-efficiency green hydrogen storage and transportation and it is also capable of serving as a low-carbon energy source. Although ammonia can be synthesized through the Haber-Bosch process, the high energy consumption and carbon emissions associated with this process result in minimal carbon reduction. To address the critical drawbacks of the traditional Haber-Bosch process, various thermochemical synthesis methods have been developed recently, allowing for the synthesis of ammonia with lower carbon emissions and a higher energy efficiency. Research is also progressing in the development of high-performance catalyst materials that are capable of demonstrating sufficient ammonia synthesis performance under milder process conditions compared to conventional methods. Additionally, a variety of different processes such as chemical-looping ammonia synthesis, plasma synthesis, and mechanochemical synthesis are being applied diversely. This review aims to provide a detailed overview of the emerging ammonia synthesis technologies that have been developed to effectively store green hydrogen for future applications.

Synthesis of Melandrin (Melandrin의 합성)

  • 문정술;이강노;임중기;우원식
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.332-334
    • /
    • 1991
  • The synthesis of melandrin has been accomplished in good yield by the reaction of 5-tosyloxyanthranilic acid ethyl ester with p-acetoxybenzoyl chloride, followed by removal of protecting groups with methanolic ammonia.

  • PDF

Effect of Exogenous Sulfur on Hydrogen Peroxide, Ammonia and Proline Synthesis in White Clover (Trifolium repens L.)

  • Baek, Seon-Hye;Muchamad, Muchlas;Lee, Bok-Rye;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.195-200
    • /
    • 2022
  • Sulfur is an essential element in plants, including amino acids, vitamin synthesis, and acting as an antioxidant. However, the interaction between endogenous sulfur and proline synthesis has not been yet fully documented. White clover (Trifolium repens L.) is known as a species highly sensitive to sulfate supply. Therefore, this study aimed to elucidate the role of sulfur in regulating proline metabolism in relation to ammonia detoxification and hydrogen peroxide (H2O2) accumulation in white clover. The detached leaves of white clover were immersed in solution containing different concentration of sulfate (0, 10, 100, and 1000 mM MgSO4). As MgSO4 concentrations were increased, the concentration of H2O2 increased up to 2.5-fold compared to control, accompanied with H2O2 detection in leaves. Amino acid concentrations significantly increased only at higher levels (100 and 1000 mM MgSO4). No significant difference was observed in protein concentration. Proline and ∆1-pyrroline-5-carboxylate (P5C) concentrations slightly decreased at 10 and 100 mM MgSO4 treatments, whereas it rapidly increased over 1.9-fold at 1000 mM MgSO4 treatment. Ammonia concentrations gradually increased up to 8.6-fold. These results indicate that exogenous sulfur levels are closely related to H2O2 and ammonia synthesis but affect proline biosynthesis only at a higher level.

Removal Characteristic of Ammonia Nitrogen and Behavior of Nitrogen in Synthetic Wastewater Using Leclercia Adecarboxylata (Leclercia Adecarboxylata를 이용한 합성폐수의 암모니아성질소 제거특성 및 질소거동)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.460-465
    • /
    • 2007
  • In this study, the removal characteristic of ammonia nitrogen and behavior of nitrogen was investigated using Leclercia adecarboxylata, which was derived from the culture contaminated by ammonia nitrogen of high concentration. The method of ammonia nitrogen removal was not biological nitrification and denitrification but elimination of nutrient salt with internal synthesis of microorganisms which use ammonia nitrogen as substrate. L. adecarboxylata(one of ammonia synthesis microorganisms) was highly activated and showed the most high removal efficiency in free salt condition but the removal efficiency decreased badly in salt concentration of more than 4%. About 80 mg/L of $NH_3-N$ was mostly removed within 20 hours and 500 mg/L of $NH_3-N$ showed less then removal efficiency of 50% because carbon source was not enough. However, ammonium nitrogen concentration was decreased again when the carbon source was inserted additionally thus, ammonium nitrogen removal efficiency by L. adecarboxylata, was related to amount of carbon source. pH decreased from 8.0 to 6.36 according to growth of L. adecarboxylata. Concentration of nitrite nitrogen and nitrate nitrogen did not increase and TKN concentration showed no variation while ammonia nitrogen was removed by L. adecarboxylata. In addition to, when content of protein in organic nitrogen was measured, protein was not detected at the beginning of microorganism synthesis but protein of 193.1 mg/L was detected after 48 hours. Hence, ammonium nitrogen was not decomposed as nitrate nitrogen and nitrite nitrogen but synthesized by L. adecarboxylata, which has excellent ability of nitrogen synthesis and can threat ammonia nitrogen of high concentration in wastewater.

Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell (Pt/GDC/Pt 셀을 이용한 물과 질소로부터 전기화학적 암모니아 합성)

  • Jeoung, Hana;Kim, Jong Nam;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng;Song, Ki Chang;Sharma, Monika;Yoon, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.58-62
    • /
    • 2014
  • Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range $400{\sim}600^{\circ}C$ and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was $3.67{\times}10^{-11}mols^{-1}cm^{-2}$ with 0.1% faradaic efficiency at $600^{\circ}C$.

Isolation and characterization of glutamate dehydrogenase defective mutant of brevibacterium flavum (Brevibacterium flavum의 glutamate dehydrogenase결핍돌연변이주의 분리 및 특성)

  • 최순영;성하진;민경희
    • Korean Journal of Microbiology
    • /
    • v.26 no.2
    • /
    • pp.93-100
    • /
    • 1988
  • In order to understand the regulation of glutamate dehydrogenase(GDH) synthesis in Brevibacterium flavum, we have isolated a mutant lacking NADP-linked GDH activity by ethlmethane sulfonate treatment. The $gdh^-$ mutant was grown on the minimal plate with 1mM ammonium chloride and not that with 300mM ammonium chloride. The cell-free extracts from $gdh^-$ mutant and prototroph were also examined with glutamine synthetase(GS) and glutamate synthase (GOGAT) production by niteogen sources. The growth of $gdh^-$ mutant in presence of 20mM ammonium chloride means that GOGAT synthesis is sufficient to allow growth in this condition. GS production of $gdh^-$ mutant as well as parental strain was induced by 1mM urea and ammonium tartrate, but it was repressed by higher concentration of ammonia, and also induced by 20mM to 50mM glutamate as a substrate. It was special attention that GOGAT synthesis from $gdh^-$ strain was more repressed by higher concentration of ammonia than prototroph as described in E. coli system.

  • PDF

Optimization of Green Ammonia Production Facility Configuration in Australia for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.269-276
    • /
    • 2024
  • Many countries across the world are making efforts beyond reducing CO2 levels and declaring 'net zero,' which aims to cut greenhouse gas emissions to zero by not emitting any carbon or capturing carbon, by 2050. Hydrogen is considered a key energy source to achieve carbon neutrality goals. Korean companies are also interested in building overseas green ammonia production plants and importing hydrogen into Korea in the form of ammonia. Green hydrogen production uses renewable energy sources such as solar and wind power, but the variability of power production poses challenges in plant design. Therefore, optimization of the configuration of a green ammonia production plant using renewable energy is expected to contribute as basic information for securing the economic feasibility of green ammonia production.