• Title/Summary/Keyword: Ammonia absorption system

Search Result 55, Processing Time 0.032 seconds

Stability Analysis of Marangoni Convection for $NH_3\;-H_2O$ Absorption Process (전파이론을 통한 $NH_3\;-H_2O$ 흡수과정의 마란고니 대류 안정성 해석)

  • 최창균;김제익;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.450-455
    • /
    • 2002
  • Convective instability driven by surface tension is analyzed in an initially quiescent water absorbing ammonia gas using the linear stability theory. The propagation theory is adapated to find the critical conditions of the onset of solutal Maragoni convection. In this theory, the solutal penetration depth is chosen as the length scale factor. The results show that the liquid layer becomes more stable with decreasing the Schmidt number It is interesting that for a smaller Biot number than 100, the system becomes stable with decreasing Bi but for a larger Bi, it becomes unstable with decreasing Bi.

Energy and Exergy Analysis of Kalina Based Power and Cooling Combined Cycle (칼리나 사이클을 기반으로 하는 동력 및 냉동 복합 사이클의 에너지 및 엑서지 성능 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.242-249
    • /
    • 2020
  • The Kalina cycle (KC) is considered as one of the most efficient systems for recovery of low grade heat. Recently, Kalina based power and cooling cogeneration cycles (KPCCCs) have been suggested and attracted much attention. This paper presents an energy and exergy analysis of a recently suggested KPCCC with flexible loads. The cycle consists of a KC (KCS-11) and an aqua-ammonia absorption refrigeration cycle. By adjusting the splitting ratios, the cycle can be operated with four modes of pure Kalina cycle, pure absorption cooling cycle, Kalina-cooling parallel cycle, and Kalina-cooling series cycle. The effects of system variables and the operating modes on the energetic and exergetic performances of the system are parametrically investigated. Results show that the system has great potential for efficient utilization of low-grade heat source by adjusting loads of power and cooling.

Analysis of Falling-film Generator in Ammonia-water Absorption System (암모니아-물 흡수식 시스템에서 유하액막식 발생기의 해석)

  • 김병주;손병후;구기갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.422-430
    • /
    • 2001
  • In the present study, an evaporative generation process of ammonia-water solution film on the vertical plate was analysed. For the utilization of waste heat, hot water of low temperature was used as the heat source. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. Counter-current solution-vapor flow resulted in the refrigerant vapor of the higher ammonia concentration than that of co-current flow. Eve the rectification of refrigerant vapor was observed near the inlet of solution film in counter-current flow. For the optimum operation of generator using hot water, numerical experiments, based on the heat exchange and generation efficiencies. revealed the inter-relationships among the Reynolds number of the solution film and hot water, and the length of generator. Enhancement of heat and mass transport in the solution film was found to be very effective for the improvement of generation performance, especially at high solution flow rate.

  • PDF

evaluation of Performance Characteristic on Triple Effect Absorption Cycle (삼중효용 흡수사이클의 성능특성 평가)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

The Study on the Realtime Evaluation of NH3 Absorption Efficiency Using Chemical Gas Sensor (가스센서를 활용한 암모니아 가스의 실시간 흡수 효율 평가에 관한 연구)

  • Lim, Jung-Jin;Kim, Han-Soo;Kim, Sun-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • This study was carried out to develop the realtime evaluation system of $NH_3$ absorption efficiency with gas sensors which were installed on the inlet and outlet of lab-scale scrubber system. The $NH_3$ absorption amount, calculated by sensor outcomes for 3 hr, 6 hr, and 12 hr of absorption process, was compared with the results analysed by Indo-phenol method for the absorption solution. Even though the difference between two methods was about 20%, the correlation coefficient between the two results was very high, more than 0.99. In addition, we could find very good correlation between pH, absorption amount and reaction time. Also we could find out the breakthrough time in the middle of absorption process. With more diverse experiment in the future, we can make gas sensor system for the realtime evaluation of the odor and/or air pollution treatment efficiency.

Effects of Water Temperature and Ambient Ammonia Concentration on Oxygen Consumption and Ammonia Excretion of Greenling Hexagrammos otakii Jordan et Stalks (환경수의 수온과 암모니아 농도 변화에 따른 쥐노래미(Hexagrammos otakii Jordan et Starks) 육성어의 산소소비와 암모니아 배설)

  • Kim, You-Hee;Kim, Pyong-Kih;Kim, Hyeon-Ju;Jo, Jae-Yoon;Han, Won-Min;Park, Jeong-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.373-379
    • /
    • 2009
  • This study investigated oxygen consumption rate (OCR), $Q_{10}$ coefficient and ammonia excretion rate of the greenling, Hexagrammos otakii Jordan et Starks with the average body weight of 250 g in a semi-recirculated respiratory measuring system. The experiment was done under three different water temperatures (10, 15, $20^{\circ}C$) and five different ambient ammonia concentrations (0, 2.5, 5, 10, 20 mg/L). As the water temperature and ambient ammonia concentration increased the OCR has significantly increased (P<0.05). Given experimental conditions, the OCR of greenling were $50.8{\sim}159.4\;mg\;O_2\;kg^{-1}\;hr^{-1}$ and the relationship of water temperature (T) and ambient ammonia concentration (C) on the OCR were following: OCR = 41.3 - 1.87T - 7.38C + $0.463T^2$ + $0.66lC^2$ + 0.642TC - $0.011T^3$ - $0.010C^2$ - $0.031TC^2$ - $0.001T^2$C ($r^2$= 0.9226). $Q_{10}$ coefficients were $1.88{\sim}3.50$ for $10^{\circ}C$ to $15^{\circ}C$, $1.03{\sim}2.73$ for $15^{\circ}C$ to $20^{\circ}C$ and $1.40{\sim}1.90$ for $10^{\circ}C$ to $20^{\circ}C$, respectively. In general, the ammonia excretion rate tended to increase with increasing of the water temperature within normal ambient ammonia concentration. However, interestingly, it was observed that ammonia was absorbed rather than excreted above the ambient ammonia concentration of $2.5\;mg\;L^{-1}$, regardless of the water temperature. Thus, the largest ammonia absorption rate (AAR) was obserbed at the level of $98.4\;mg\;TAN\;kg^{-1}\;hr^{-1}$. The relationship ambient ammonia concentration (C) on AAR was following: Y = 1.61 + $10.9X^{0.7}$ ($r^2$ = 0.889).