• Title/Summary/Keyword: Ammonia SCR

Search Result 98, Processing Time 0.024 seconds

An Experimental Study on Optimization of $NH_3$ Injection for the Selective Catalytic Reduction(SCR) System (선택적 환원 촉매(SCR)에서 암모니아($NH_3$) 분사량 최적화에 대한 실험적 연구)

  • Jang, Ik-Kyoo;Yoon, Yu-Bin;Park, Young-Joon;Lee, Seang-Wock;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2874-2879
    • /
    • 2008
  • The Selective catalytic reduction(SCR) system is a highly-effective device of $NO_x$ reduction for diesel engines. Generally, the ammonia($NH_3$) generated from a liquid urea-water solution is used for the reductant. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency becomes lower, due to temperature window. And space velocity also affects to $NO_x$ conversion efficiency. This paper reviews a laboratory study to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the SCR system. The maximum conversion efficiency of $NO_x$ was indicated when the $NH_3$ to $NO_x$ ratio was 1.2 and the space velocity was $60,000\;h^{-1}$. The results of this paper contribute to improve overall $NO_x$ reduction efficiency and $NH_3$ slip.

  • PDF

Change of Ammonia Consumption with Gas Turbine Output in DeNOx System for a 580 MW Combined Cycle Power Plant (580 MW급 복합발전소 탈질설비에서 가스터빈 출력에 따른 암모니아 소모량 변화)

  • Jang, Yong-Woo;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.15 no.3
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, ammonia consumption by gas turbine output was adjusted to find out the amount of ammonia consumption that complies with the enhanced Air Quality Preservation Act and internal regulation emission standards in SCR type DeNOx System for a 580 MW Sejong Combined Cycle Power Plant. For measurements, the gas turbine output was varied to 50, 99, 149, 198 MW and ammonia consumption was adjusted with the combustion gas and ammonia supply conditions fixed at each stage. When the emission limit were change from 10 ppm to 8 ppm, ammonia consumption was increased from 78, 93, 105, 133 kg/h to 89, 113, 132, 176 kg/h. The increase rate of ammonia consumption was 14, 22, 26, 32% per output category compared to the 10 ppm emission limit, which was shown to increase as output increased.

The Study on the Effect of Phosphorous Poisoning of V/W/TiO2 Catalyst According to the Addition of Sb in NH3-SCR (NH3-SCR에서 Sb 첨가에 따른 V/W/TiO2 촉매의 Phosphorous 피독 영향 연구)

  • Jung, Min Gie;Shin, Jung Hun;Lee, Yeon Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.516-523
    • /
    • 2021
  • A study using selective catalytic reduction (SCR) was conducted in conjunction with ammonia as a reducing agent for controlling nitrogen oxides, a typical secondary inducer of fine dust in the atmosphere. For NH3-SCR experiments, a commercial catalyst of V/W/TiO2 only and also V/W-Sb/TiO2 catalyst with Sb were used, and phosphorous durability was confirmed. As a result of NH3-SCR experiments, it was confirmed that the addition of Sb to V/W/TiO2 had durability against phosphorous. In addition, the physical and chemical properties were comparatively analyzed through BET, XPS, H2-TPR, NH3-TPD, and FT-IR analysis. From the anaylsis results, when Sb was added to V/W/TiO2 catalyst, P was also added resulting in the formation of SbPO4 and the generation of VOPO4 was suppressed. The phosphorous durability was confirmed by maintaining the redox characteristics of the catalyst before P was added.

Characterization of $TiO_2$ base catalyst for de-NOx (질소산화물 제거를 위한 $TiO_2$계 촉매 제조 및 특성 시험)

  • Kim, Tae-Hoon;Jo, Young-Min;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • One of main catalysts for De-NOx in SCR is a $V_2O_5/TiO_2$, and this work formulated powdery catalysts focusing ultimately on corrugate catalytic support. The prepared catalyst consisted of anatase $TiO_2$. Amount of the added vanadium oxide determined the viscosity of catalyst slurry, which is important for washcoat for a final corrugate type catalytic reactor. The test showed a proportional relation between adsorption amount of ammonia and specific surface area. De-NOx efficiency could be obtained up to 96.3 % at $400^{\circ}C$ with a spacial velocity of $4,000hr^{-1}$.

An experimental study on the mixing of evaporating liquid spray in a duct flow (덕트 유동에서 증발을 수반하는 액상 스프레이의 혼합 특성에 대한 실험적 연구)

  • Kim, Y.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.30-38
    • /
    • 2006
  • High temperature furnaces such as power plant and incinerator contribute considerable part of NOx generation and face urgent demand of De-NOx system. Reducing agent is injected into the flue gas flow to activate do-NOx system. Almost SCR system adopt vaporized ammonia injection system. Vaporizer, dilution system and additional space are needed to gasify and inject ammonia. Liquid spray injection system can simplify and economize post-treatment system of flue gas. In this study, mixing caused by gas or liquid injection of reducing agent into flue gas duct was investigated experimentally. Carbonated water was used as tracer and simulated agent and mixing of liquid spray in a duct flow was studied. To achieve that, the angle of attack of static mixer is simulated and $CO_2$ concentration is measured.

  • PDF

A Study on the Deactivation of Commercial DeNOx Catalyst in Fired Power Plant (화력발전소 상용 탈질 촉매의 활성저하 원인에 관한 연구)

  • Park, Kwang Hee;Lee, Jun Yub;Hong, Sung Ho;Choi, Sang Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.376-381
    • /
    • 2008
  • The deactivation of $V/TiO_2$ catalyst used in SCR (Selective Catalytic Reduction) using ammonia as a reductant to remove the nitrogen oxides (NOx) in the exhaust gas from fired power plant has been studied. The activity and surface area of the catalyst (Used-cat) which was exposed to the exhaust gas for long period have considerably decreased. The characterizations of these SCR catalysts were performed by XRD, FT-IR, FE-SEM, and IC/ICP. The crystal structure of $TiO_2$ both fresh and used catalyst has not been changed. However, $(NH_4)HSO_4$ deposited on the used catalyst surface verified from FT-IR, FE-SEM, and IC/ICP analysis. Moreover, the durability of $SO_2$ was increased by diminishing sulfate ($SO_4^{-2}$)f form.

The Role of Lattice Oxygen in the Selective Catalytic Reduction of NOx on V2O5/TiO2 Catalysts (V2O5/TiO2 촉매의 선택적 환원촉매반응에서 격자산소의 역할)

  • Ha, Heon-Phil;Choi, Hee-Lack
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.323-328
    • /
    • 2006
  • In situ electrical conductivity measurements on $V_2O_5WO_3/TiO_2$ catalysts were carried out at between 100 and $300^{\circ}C$ under pure oxygen, NO and $NH_3$ to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) de NOX. The electrical conductivity of catalysts changed irregularly with supply of NO. It was, however, found that the electrical conductivity change with ammonia supply was regular and the increase of electrical conductivity was mainly caused by reduction of the labile surface oxygen. The electrical conductivity change of catalysts showed close relationship with the conversion rate of NOx. Variation of conversion rate in atmosphere without gaseous oxygen also showed that labile lattice oxygen is indispensable in the initial stage of the de NOx reaction. These results suggest that liable lattice oxygen acts decisive role in the de NOx mechanism. They also support that de NOx reaction occurs through the Eley?Rideal type mechanism. The amount of labile oxygen can be estimated from the measurement of electrical conductivity change for catalysts with ammonia supply. This suggests that measurement of the change can be used as a measure of the de NOx performance.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration (바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구)

  • Jung, Min Gie;Hong, Sung Chang
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.315-324
    • /
    • 2021
  • In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.

Evaluation of NOx Reduction Efficiency and Emission Factor from Large Combustion Facilities in Seoul (서울지역 대형연소시설에서의 질소산화물 제거효율과 배출계수 산정)

  • 신진호;오석률;김정영;전재식;신정식
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • This survey was performed to investigate the NOx emission factors at 3 Municipal Solid Waste Incinerators(MSWI) and 5 Power generation boilers in Seoul. The NOx concentrations were measured before and after control systems. The results were as follows. 1) The NOx reduction efficiencies of Selective Catalytic Reduction (SCR) using ammonia as reducing agent ranged from 53.7% to 89.9%. The NOx reduction efficiencies of SCR using methanol as reducing agent, Non- Selective Catalytic Reduction (NSCR) using ethanol as reducing agent and low-NOx burner were 20.8%, 29.1% and 24.7%, respectively. 2) The NOx emission factors at A-1, A-2 and A-3 facilities of MSWI were 0.786, 0.127 and 0.594 kg Nox/ton fuel, respectively. The factors of A-1 and A-3 facilities were higher than the average value of Korea. 3) The NOx emission factors at B-1, B-2, B-3, B-4 and B-5 facilities of Power generation boiler were 2.109, 0.726, 4.106, 8.378 and 5.168 kg Nox/ton fuel, respectively. The factors of B-4 and B-5 facilities were higher than the average value of Korea.