• 제목/요약/키워드: Amino acid transport

검색결과 130건 처리시간 0.024초

갈색거저리 유래 저분자단백질체의 분석 (Proteomic Study for Low Molecular Weight Peptides in the Mealworm Tenebrio molitor)

  • 김일석;방우영;방규호;김삼웅
    • 생명과학회지
    • /
    • 제31권2호
    • /
    • pp.219-222
    • /
    • 2021
  • 본 연구에서는 저분자펩타이드로부터 유래되는 단백질을 확인하기 위해 갈색거저리의 유충, 번데기, 성충의 저분자 단백질체 분석을 수행하였다. 저분자 펩타이드 분석으로부터 유래된 54 단백질이 최종적으로 확인되었다. 확인된 단백질 중 성체에만 존재하는 단백질이 가장 높은 빈도로 존재하였고, 그 다음은 성체와 유충에 동시 존재하는 단백질이 높은 빈도로 탐색되었다. 그러나 번데기를 포함하는 그룹들은 모두 낮은 빈도로 감지되었다. 분석된 단백질에 orthologous classification의 결과에서 일반적 기능 예견만(general function prediction only) 보이는 단백질이 가장 높은 빈도로 조사되었다. 크로마틴 구조와 동적상태(chromatin structure and dynamics)에 연관된 단백질은 비교적 높은 빈도로 탐색되었다. 또한, 아미노산 수송과 물질대사(amino acid transport and metabolism) 및 탄수화물 수송 및 물질대사(carbohydrate transport and metabolism)와 연관된 단백질도 높은 빈도로 분석되었다. 그러나 뉴클레오타이드 수송 물질대사, 코엔자임 수송 및 물질대사, 세포외 구조, 모빌로좀(mobilome), 및 핵 구조와 연관된 단백질은 전혀 탐지되지 않았다. 따라서 크로마틴, 아미노산, 탄수화물 물질대사와 연관된 단백질들이 보다 쉽게 저분자 펩타이드로 전환되어 체액 중에 잔존될 수 있는 것으로 보이며, 이들 펩타이드들이 생리활성물질로써 기능을 수행할 수 있을 가능성이 높은 것으로 추정된다.

임신말 태반을 통한 아미노산 이동에 관한 연구 (A Study on the Transfer of Amino Acids across the Human Placenta at Term of Pregnancy)

  • 안홍석
    • Journal of Nutrition and Health
    • /
    • 제18권3호
    • /
    • pp.209-216
    • /
    • 1985
  • 임신말 여성의 태반을 중심으로 모체와 태아사이의 아미노산 이동 현상을 이해하고저 모체쪽의 antecubital vein, uterine vein과 iliac artery에서 태아쪽의 umbilical vein과 artery에서 혈액을 채취하여 23개의 혈장 유리아미노산 농도를 측정 비교하였다. 본 실험에서 얻어진 결과들을 요약하면 다음과 같다. 첫째, glutamate를 제외하고는 모체의 antecubital vein과 태아의 umbilical vein의 아미노산 농도의 비는 1.21에서 3.21의 범위를 보여주고 있어 태아의 혈장 유리아미노산 농도가 모체에서 보다 훨씬 높았다. 둘째, 모체쪽의 iliac artery의 아미노산 농도와 태아의 umbilical vein의 아미노산 농도 사이에 존재하는 상호관계를 살펴보았을 때, 대부분의 아미노산들은 직선의 관계를 보였다. 이와같은 결과는 직선의 기울기가 1에 가까운 중성 아미노산은 단순확산, 직선의 기울기가 1과 상이한 염기성 및 산성아미노산은 단순확산과 능동적 이동과의 동적평형으로 해석되었으며, 따라서 태반은 아미노산에 대하여 단순한 장벽만의 역할을 하는 것이 아님을 의미하고 있다.

  • PDF

Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines

  • Shashi Gautam;Sana Latif;Young-Sook Kang
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.154-161
    • /
    • 2024
  • Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a nonessential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.

세포주와 마우스 조직에서 타우린수송체의 발현분석 (Expression of Taurine Transporter in Cell Lines and Murine Organs)

  • 김하원;안희창;안혜숙;현진원;이은방
    • Biomolecules & Therapeutics
    • /
    • 제10권2호
    • /
    • pp.78-84
    • /
    • 2002
  • Taurine (2-ethaneaminosulfonic acid, $^+{NH}_3{CH_2}{CH_2}{SO_3^{-}}$) is endogenous amino acid with functions as modulator of osmoregulation, antioxidation, detoxification, transmembrane calcium transport, and a free radical scavenger in mammalian tissues. Taurine transporter(TAUT) contains 12 transmembrane helices, which are typical of the $Na^+$- and $Cl^-$-dependent transporter gene family, and has been cloned recently from several species and tissues. To analyze the expression of TAUT mRNA, one step RT-PCR was performed from human and mouse cultured cell lines and from various mouse tissues. The primers were designed to encode highly conserved amino acid sequences at the second transmembrane domain and at the fourth and fifth intracellular domains. RT-PCR analysis showed both of the human intestine HT-29 and mouse macrophage RAW264.7 cell lines expressed mRNA of TAUT. To define the expression patterns of the TAUT mRNA in the murine organs, RT-PCR was performed to detect cDNA representing TAUT mRNA from seven different mouse tissues. The TAUT was detected in all of the mouse tissues analyzed such as heart, lung, thymus, kidney, liver, spleen and brain. A large amount of transcript was fecund from heart, liver, spleen, kidney, and brain, while lung contained a very small amount of transcript.

Changes in Renal Brush-Border Sodium-Dependent Transport Systems in Gentamicin-Treated Rats

  • Suhl, Soong-Yong;Ahn, Do-Whan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.403-411
    • /
    • 1997
  • To elucidate the mechanism of gentamicin induced renal dysfunction, renal functions and activities of various proximal tubular transport systems were studied in gentamicin-treated rats (Fisher 344). Gentamicin nephrotoxicity was induced by injecting gentamicin sulfate subcutaneously at a dose of 100 $mg/kg{\cdot}day$ for 7 days. The gentamicin injection resulted in a marked polyuria, hyposthenuria, proteinuria, glycosuria, aminoaciduria, phosphaturia, natriuresis, and kaliuresis, characteristics of aminoglycoside nephropathy. Such renal functional changes occurred in the face of reduced GFR, thus tubular transport functions appeared to be impaired. The polyuria and hyposthenuria were partly associated with a mild osmotic diuresis, but mostly attributed to a reduction in free water reabsorption. In renal cortical brush-border membrane vesicles isolated from gentamicin-treated rats, the $Na^+$ gradient dependent transport of glucose, alanine, phosphate and succinate was significantly attenuated with no changes in $Na^+-independent$ transport and the membrane permeability to $Na^+$. These results indicate that gentamicin treatment induces a defect in free water reabsorption in the distal nephron and impairs various $Na^+-cotransport$ systems in the proximal tubular brush-border membranes, leading to polyuria, hyposthenuria, and increased urinary excretion of $Na^+$ and other solutes.

  • PDF

Poly(2-Hydroxyethyl Methacrylate)막을 통한 아미노산의 확산 기구에 관한 연구 (The Study for Diffusion Mechanism of Amino Acids Through Poly(2-Hydroxyethyl Methacrylate) Membrane)

  • 김의락;정봉진;이명재;민경섭
    • 대한화학회지
    • /
    • 제37권1호
    • /
    • pp.10-21
    • /
    • 1993
  • 2-hydroxyethyl methacrylate(HEMA)을 중합한 P(HEMA)막을 통하여 10가지 아미노산들의 확산계수, 분배계수 및 투과도를 용액의 pH 변화하에서 조사 연구하였다. 아미노산의 투과도는 각 아미노산들의 분자형태, 분자크기 및 전하량에 따라 다른 값을 나타냄을 확인하였으며, 특히 용액의 pH에 따라 전하량이 변화하는 각 아미노산은 P(HEMA)막을 통하여 투과시킬 때 모든 아미노산이 중성영역용액에서 가장 많이 투과되고 이때 막은 미세공막으로 작용하며, 염기성영역용액에는 산성영역용액보다 더 많이 투과되고 막은 분배막으로 작용함을 알았다.

  • PDF

Differential Effect of Homocysteic Acid and Cysteic Acid on Changes of Inositol Phosphates and $[Ca^{2+}]i$ in Rat Cerebellar Granule Cells

  • Kim, Won-Ki;Pae, Young-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 1998
  • The present study was undertaken to characterize homocysteic acid (HCA)-and cysteic acid (CA)-mediated formation of inositol phosphates (InsP) in primary culture of rat cerebellar granule cells. HCA and CA stimulated InsP formation in a dose-dependent manner, which was prevented by the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphopentanoic acid (APV). CA-, but not HCA-, mediated InsP formation was in part prevented by the metabotropic glutamate receptor antagonist ?${\alpha}$-methyl-4-carboxyphenylglycine ($({\pm})$-MCPG). Both HCA- and CA-mediated increases in intracellular calcium concentration were completely blocked by APV, but were not altered by $({\pm})$-MCPG. CA-mediated InsP formation was in part prevented by removal of endogenous glutamate. In contrast, the glutamate transport blocker L-aspartic acid-${\beta}$-hydroxamate synergistically increased CA responses. These data indicate that in cerebellar granule cells HCA mediates InsP formation wholly by activating NMDA receptor. In contrast, CA stimulates InsP formation by activating both NMDA receptor and metabotropic glutamate receptor, and in part by releasing endogenous glutamate into extracellular milieu.

  • PDF

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

Cloning and Sequence Analysis of Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Yak

  • Li, Sheng-Wei;Jiang, Ming-Feng;Liu, Yong-Tao;Yang, Tu-Feng;Wang, Yong;Zhong, Jin-Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1673-1679
    • /
    • 2008
  • In order to study the biological function of gapdh gene in yak, and prove whether the gapdh gene was a useful intra-reference gene that can be given an important role in molecular biology research of yak, the cDNA sequence encoding glyceraldehyde-3-phosphate dehydrogenase from yak was cloned by the RT-PCR method using gene specific PCR primers. The sequence results indicated that the cloned cDNA fragment (1,008 bp) contained a 1,002 bp open reading frame, encoding 333 amino acids (AAs) with a molecular mass of 35.753 kDa. The deduced amino acids sequence showed a high level of sequence identity to Bos Taurus (99.70%), Xenopus laevis (94.29%), Homo sapiens (97.01%), Mus musculus (97.90%) and Sus scrofa (98.20%). The expression of yak's gapdh gene in heart, spleen, kidney and brain tissues was also detected; the results showed that the gapdh gene was expressed in all these tissues. Further analysis of yak GAPDH amino acid sequence implied that it contained a complete glyceraldehyde-3-phosphate dehydrogenase active site (ASCTTNCL) which ranged from 148 to 155 amino acid residues. It also contained two conserved domains, a NAD binding domain in its N-terminal and a complete catalytic domain of sugar transport in its C-terminal. The phylogenetic analysis showed that yak and Bos taurus were the closest species. The prediction of secondary structures indicated that GAPDH of yak had a similar secondary structure to other isolated GAPDH. The results of this study suggested that the gapdh gene of yak was similar to other species and could be used as the intra-reference to analyze the expression of other genes in yak.

Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver

  • Milan Holecek
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.385-391
    • /
    • 2023
  • Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer.