Browse > Article
http://dx.doi.org/10.5713/ajas.2008.80221

Cloning and Sequence Analysis of Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Yak  

Li, Sheng-Wei (College of Life Sciences and Technology, Southwest University for Nationalities)
Jiang, Ming-Feng (College of Life Sciences and Technology, Southwest University for Nationalities)
Liu, Yong-Tao (College of Life Sciences and Technology, Southwest University for Nationalities)
Yang, Tu-Feng (College of Life Sciences and Technology, Southwest University for Nationalities)
Wang, Yong (College of Life Sciences and Technology, Southwest University for Nationalities)
Zhong, Jin-Cheng (College of Life Sciences and Technology, Southwest University for Nationalities)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.11, 2008 , pp. 1673-1679 More about this Journal
Abstract
In order to study the biological function of gapdh gene in yak, and prove whether the gapdh gene was a useful intra-reference gene that can be given an important role in molecular biology research of yak, the cDNA sequence encoding glyceraldehyde-3-phosphate dehydrogenase from yak was cloned by the RT-PCR method using gene specific PCR primers. The sequence results indicated that the cloned cDNA fragment (1,008 bp) contained a 1,002 bp open reading frame, encoding 333 amino acids (AAs) with a molecular mass of 35.753 kDa. The deduced amino acids sequence showed a high level of sequence identity to Bos Taurus (99.70%), Xenopus laevis (94.29%), Homo sapiens (97.01%), Mus musculus (97.90%) and Sus scrofa (98.20%). The expression of yak's gapdh gene in heart, spleen, kidney and brain tissues was also detected; the results showed that the gapdh gene was expressed in all these tissues. Further analysis of yak GAPDH amino acid sequence implied that it contained a complete glyceraldehyde-3-phosphate dehydrogenase active site (ASCTTNCL) which ranged from 148 to 155 amino acid residues. It also contained two conserved domains, a NAD binding domain in its N-terminal and a complete catalytic domain of sugar transport in its C-terminal. The phylogenetic analysis showed that yak and Bos taurus were the closest species. The prediction of secondary structures indicated that GAPDH of yak had a similar secondary structure to other isolated GAPDH. The results of this study suggested that the gapdh gene of yak was similar to other species and could be used as the intra-reference to analyze the expression of other genes in yak.
Keywords
Yak; Glyceraldehyde-3-Phosphate Dehydrogenase gene; Cloning; Housekeeping Gene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Gianni, C., A. Giovanna, F. Myriam, G. Gastone and Nussdorfer. 2005. Similar sequence-free amplification of human glyceraldehydes-3-phosphate dehydrogenase for real time RT-PCR applications. Mol. Cell. Probes. 19:181-186.   DOI   ScienceOn
2 Gong, Y., L. Cui and G. Y. Minuk. 1996. Comparison of glyceraldehyde-3-phosphate dehydrogenase and 28s-ribosomal RNA gene expresslon in human hepatocellular carcinoma. Hepatology 23(4):734-737.   DOI
3 Haque, B. U., R. A. Belecheanu, R. J. Barson, K. S. Pawar, F. Revillion, V. Pawlowski, L. Hornez and J. P. Peyrat. 2000. Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur. J. Cancer. 36(8):1038-1042.   DOI   ScienceOn
4 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389-3402.   DOI
5 Berry, M. D. and A. A. Boulton. 2000. Glyceraldehyde-3-phosphate dehydrogenase and apoptosis. J. Neu. Res. 60:150-154.   DOI   ScienceOn
6 Engel, M., M. Seifert, B. Theisinger, U. Seyfert and C. Welter. 1998. Glyceraldehyde-3-phosphate dehydrogenase and Nm23H1/nucleoside diphosphate kinase A: two old enzymes combine for the novel Nm23 protein phosphotransferase function. J. Biol. Chem. 273(32):20058-20065.   DOI   ScienceOn
7 Mazzola, J. L. and M. A. Sirover. 2003. Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of it s glycolytic function. Biochimica and Biophysica Acta, 16(22):50-56.
8 Viscogliosi, E. and M. M. Ller. 1998. Phylogenetic relationships of the glycolytic enzyme, glyceraldehyde-3-phosphatedehydrogenase, fromparabasalid flagellates. J. Mol. Evol. 47:190-199.   DOI   ScienceOn
9 Robbins, A. R., R. D. Ward and C. Oliver. 1995. A mutation in glyceraldehydes-3-phosphate dehydrogenase alters endocytosis in CHO cells. J. Cel. Biol. 130(5):1093-1094.   DOI   ScienceOn
10 Lee, S. H., E. W. Park, Y. M. Cho, S. K. Kim, J. H. Lee, J. T. Jeon, C. S. Lee, S. K. Im, S. J. Oh, J. M. Thompson and D. Yoon. 2007. Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of hanwoo steers. J. Biochem. Mol. Biol. 30;40(5):757-64.   과학기술학회마을   DOI   ScienceOn
11 Maglott, D, J. Ostell, K. D. Pruitt and T. Tatusova. 2007. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 35:26-31.
12 Martin, W., H. Brinkmann, C. Savonna and R. Cerff. 1993. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenasegenes. Proc. Natn. Acad. Sci. USA. 90:8692-8696.   DOI
13 Hocquette, J. F., B. Graulet C. Castiglia-Delavaud, F. Bornes, N. Lepetit and P. Ferre. 1996. Insulin-sensitive glucose transporter transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment. Int. J. Biochem. Cell Biol. 28(7):795-806.   DOI   ScienceOn
14 Katherine, M. S., R. M. Nasima, C. W. James and A. S. Michael. 1992. Proliferative dependent regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in human cells. Carcinogenesis 13(11):21-27.
15 Kim, H. H., M. B. Seol, D. H. Jeon, S. S. Sun, K. H. Kim, Y. J. Choi and M. G. Baik. 2001. Cloning and expression of lactate dehydrogenase H chain gene in adipose tissues of Korean cattle. Asian-Aust. J. Anim. Sci. 14(12):1670-1674.   DOI
16 Schek, N., B. L. Hall and O. J. Finn. 1988. Increased glyceraldehyde-3-phosphate dehydrogenase gene expression human pancreatic adenocarcinoma. Cancer. Res. 48:6354-6359.
17 Gerald, W., J. L. Han and R. J. Long. 2003. The yak. Published by the regional office for Asia and the pacific food and agriculture organization of the united nationa, Bangkok, Thailand.
18 Yamagata, M., M. Mori, N. A. Begum, K. Shibuta, K. Shimoda and G. F. Barnard. 1998. GIyceraldehyde-3-phosphate Dehydrogenase mRNA expression in hepatocellular carcinoma. Int. J. Oncol. 12(3):677-683.
19 Zang, W. Q., A. M. Fieno, R. A. Grant and T. S. Yen. 1998. Identification of glyceraldehyde-3-phosphate as a cellular protein that binds to the hepatitis B virus posttranscriptional regulatory element. Virology 248(1):46-52.   DOI   ScienceOn
20 Singh, R. and M. R. Green. 1993. Sequence-specificity binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Sci. 259(5093):365-368.   DOI
21 Sirover, M. A. 1999. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Bioehlm. Biophys. Acts. 1432(2):159-184.   DOI   ScienceOn
22 Sirover, M. A. 1997. Role of the glycolytic protein, glyceraldehydes-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cel. Bio. 66:133-140.   DOI   ScienceOn
23 Tisdale, E. J. 2002. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase ciota /lambda and plays a role in microtubule dynamics in the early secretory pathway. J. Biol. Chem. 277(5):3334-3341.   DOI   ScienceOn
24 Vila, M. R., A. Nicolas and J. Morote. 2000. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction. Cancer. 89(1):152-164.   DOI   ScienceOn
25 Miller, D. J., R. B. Harris and Cui-Quan Cai. 1994. Wild yak and their consercation in the Tibetan Plateau. Proceedings of the first international congress on yak. Journal of Gansu Agricultural University (Special issue June 1994). pp. 27-35.