• Title/Summary/Keyword: Amine-Based Absorbent

Search Result 8, Processing Time 0.017 seconds

Substituent Effect in the Reaction of Carbon Dioxide with Amine-Based Absorbent (치환기 특성에 따른 아민흡수제와 CO2의 반응특성 평가)

  • Shim, Jae-Goo;Lee, Junghyun;Jung, Jin-Kyu;Kwak, No-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2020
  • The reaction of carbon dioxide with the amine-based absorbents which have various substituents in the molecule was described. In the case of MEA which is a representative primary amine, the absorption reaction was proceeded very fast while the regeneration reaction was took place slowly due to the strong bond strength between the absorbent and carbon dioxide. The more substituents on N atom of the absorbent, the slower the absorption reaction between carbon dioxide and the absorbent, which in turn causes faster the regeneration rate from the reaction intermediate, carbamate.

Characteristics of Carbon Dioxide Separation for Solid Absorbents According to Amine Order (아민 차수에 따른 고체 흡수제의 이산화탄소 분리 특성)

  • Hyun Tae Jang
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.619-626
    • /
    • 2023
  • Primary and secondary amine-based sorbents were synthesized to investigate the operation capacity for the carbon dioxide separation TSA process. (3-Aminopropyl) triethoxysilane was used as a primary amine precursor as a crosslinking agent to synthesize a secondary amine precursor in which amine groups were crosslinked with a crosslinking agent. Carbon dioxide absorbed by primary amines is completely separated above 170 ℃. The working capacity of the primary amine absorbent was less than 2% when regenerated at 130℃. The secondary amine absorbent has a higher carbon dioxide separation capacity at a lower regeneration temperature than the primary amine absorbent. The secondary amine absorbent could predict process operation performance of about 6.5% with 2% carbon dioxide absorption and 100% carbon dioxide regeneration conditions. Therefore, it was found that the working capacity of the secondary amine absorbent was higher than that of the primary amine.

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

0.1 MW Test Bed CO2 Capture Studies with New Absorbent (KoSol-5) (신 흡수제(KoSol-5)를 적용한 0.1 MW급 Test Bed CO2 포집 성능시험)

  • Lee, Junghyun;Kim, Beom-Ju;Shin, Su Hyun;kwak, No-Sang;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2016
  • The absorption efficiency of amine $CO_2$ absorbent (KoSol-5) developed by KEPCO research institute was evaluated using a 0.1 MW test bed. The performance of post-combustion technology to capture two tons of $CO_2$ per day from a slipstream of the flue gas from a 500 MW coal-fired power station was first confirmed in Korea. Also the analysis of the absorbent regeneration energy was conducted to suggest the reliable data for the KoSol-5 absorbent performance. And we tested energy reduction effects by improving the absorption tower inter-cooling system. Overall results showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate : 90%) suggested by IEA-GHG. Also the regeneration energy of the KoSol-5 showed about $3.05GJ/tonCO_2$ which was about 25% reduction in the regeneration energy compared to that of using the commercial absorbent MEA (Monoethanolamine). Based on current experiments, the KoSol-5 absorbent showed high efficiency for $CO_2$ capture. It is expected that the application of KoSol-5 to commercial scale $CO_2$ capture plants could dramatically reduce $CO_2$ capture costs.

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture (3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성)

  • Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.555-560
    • /
    • 2023
  • Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.

Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide

  • Lim, Yun Hui;Adelodun, Adedeji A.;Kim, Dong Woo;Jo, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.99-113
    • /
    • 2016
  • In order to improve the portability of basic absorbents monoethanolamine (MEA) and glycine (Gly), both were supported on microporous activated carbon (AC). Chemical modification by alkali-metal ion exchange (of Li, Na, K) was carried out on Gly-based absorbents. All supported absorbents were subjected to $CO_2$ absorption capacity (pure $CO_2$) and selectivity (indoor level) tests. Textural and chemical characterizations were carried out on test sorbents. All impregnation brought about significant reduction of specific surface area and microporosity of the adsorbent Depreciation in the textural properties was found to result to reduction in pure $CO_2$ sorption. Contrarily, low-level $CO_2$ removal capacity was enhanced as the absorbent dosage increases, resulting in supported 5 molar MEA in methanol solution. Adsorption capacities were improved from 0.016 and 0.8 in raw ACs to 1.065 mmol/g for MEA's. Surface chemistry via X-ray photoelectron spectroscopy (XPS) of the supported sorbents showed the presence of amine, pyrrole and quaternary-N. In reducing sequence of potency, pyridine, amine and pyrrolic-N were noticed to contribute significantly to $CO_2$ selective adsorption. Furthermore, the adsorption isotherm study confirms the presence of various SNGs heterogeneously distributed on AC. The adsorption mechanism of the present AC adsorbents favored Freundlich and Langmuir isotherm at lower and higher $CO_2$ concentrations respectively.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.