• Title/Summary/Keyword: American option valuation

Search Result 14, Processing Time 0.026 seconds

Valuation of European and American Option Prices Under the Levy Processes with a Markov Chain Approximation

  • Han, Gyu-Sik
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • This paper suggests a numerical method for valuation of European and American options under the two L$\acute{e}$vy Processes, Normal Inverse Gaussian Model and the Variance Gamma model. The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the existing numerical method, the lattice-based method.

Valuation of American Option Prices Under the Double Exponential Jump Diffusion Model with a Markov Chain Approximation (이중 지수 점프확산 모형하에서의 마코브 체인을 이용한 아메리칸 옵션 가격 측정)

  • Han, Gyu-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.249-253
    • /
    • 2012
  • This paper suggests a numerical method for valuation of American options under the Kou model (double exponential jump diffusion model). The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the conventional numerical method, the finite difference method for PIDE (partial integro-differential equation).

ANALYTIC SOLUTIONS FOR AMERICAN PARTIAL BARRIER OPTIONS BY EXPONENTIAL BARRIERS

  • Bae, Chulhan;Jun, Doobae
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.229-246
    • /
    • 2017
  • This paper concerns barrier option of American type where the underlying price is monitored during only part of the option's life. Analytic valuation formulas of the American partial barrier options are obtained by approximation method. This approximation method is based on barrier options along with exponential early exercise policies. This result is an extension of Jun and Ku [10] where the exercise policies are constant.

CLOSED-FORM SOLUTIONS OF AMERICAN PERPETUAL PUT OPTION UNDER A STRUCTURALLY CHANGING ASSET

  • Shin, Dong-Hoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.151-160
    • /
    • 2011
  • Typically, it is hard to find a closed form solution of option pricing formula under an asset governed by a change point process. In this paper we derive a closed-form solution of the valuation function for an American perpetual put option under an asset having a change point. Structural changes are formulated through a change-point process with a Markov chain. The modified smooth-fit technique is used to obtain the closed-form valuation function. We also guarantee the optimality of the solution via the proof of a corresponding verification theorem. Numerical examples are included to illustrate the results.

ON THE OPTION VALUATION AND DECOMPOSITION OF EXCHANGE OPTION

  • Choi, Won;Ahn, Seung-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.745-751
    • /
    • 2002
  • In this paper, we Shall find the unique rational price associated with the exchange option. Also, we find the decomposition of Snell envelope and value function of the American exchange option.

ALTERNATIVE NUMERICAL APPROACHES TO THE JUMP-DIFFUSION OPTION VALUATION

  • CHOI BYUNG WOOK;KI HO SAM;LEE MI YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.519-536
    • /
    • 2005
  • The purpose of this paper is to propose several approximating methods to obtain the American option prices under jump-diffusion processes. The first method is to extend an approximating method to the optimal exercise boundary by a multipiece exponential function suggested by Ju [17]. The second approach is to modify the analytical methods of MacMillan [20] and Zhang [25] in a discrete time space. The third approach is to apply the simulation technique of Ibanez and Zapareto [14] to the problem of American option pricing when the jumps are allowed. Finally, we compare the numerical performance of each suggesting method with those of the previous numerical approaches.

AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS

  • Moon, Kyoung-Sook;Kim, Hongjoong
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.397-406
    • /
    • 2013
  • We present an improved binomial method for pricing European- and American-type Asian options based on the arithmetic average of the prices of the underlying asset. At each node of the tree we propose a simple algorithm to choose the representative averages among all the effective averages. Then the backward valuation process and the interpolation are performed to compute the price of the option. The simulation results for European and American Asian options show that the proposed method gives much more accurate price than other recent lattice methods with less computational effort.

RELATIONSHIPS BETWEEN AMERICAN PUTS AND CALLS ON FUTURES CONTRACTS

  • BYUN, SUK JOON;KIM, IN JOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.11-20
    • /
    • 2000
  • This paper presents a formula that relates the optimal exercise boundaries of American call and put options on futures contract. It is shown that the geometric mean of the optimal exercise boundaries for call and put written on the same futures contract with the same exercise price is equal to the exercise price which is time invariant. The paper also investigates the properties of American calls and puts on futures contract.

  • PDF

An Improved Binomial Method using Cell Averages for Option Pricing

  • Moon, Kyoung-Sook;Kim, Hong-Joong
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 2011
  • We present an improved binomial method for pricing financial deriva-tives by using cell averages. After non-overlapping cells are introduced around each node in the binomial tree, the proposed method calculates cell averages of payoffs at expiry and then performs the backward valuation process. The price of the derivative and its hedging parameters such as Greeks on the valuation date are then computed using the compact scheme and Richardson extrapolation. The simulation results for European and American barrier options show that the pro-posed method gives much more accurate price and Greeks than other recent lattice methods with less computational effort.

Valuation and Optimal Timing of the Investment in Next Generation Telecommunication Service Using Real Options (실물옵션을 이용한 차세대 정보통신 투자사업의 가치 평가 및 최적 투자시기 결정)

  • Lim, Kum-Soon;Lee, Deok-Joo;Kim, Ki-Hong;Oh, Hyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-190
    • /
    • 2006
  • We evaluate the economic value and the optimal investment timing of IMT-2000 in Korea, in the perspective of a service provider who owns the business license for IMT-2000, by using the real options analysis. The result clearly shows the project value with options is positive and delaying the investment is more favorable to the provider. Binomial lattice approach, in which we try to describe American call option and sequential compound option, and sensitivity analysis present the optimal decisions according to future states and enable the management to make decision strategically and proactively.