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ABSTRACT. Typically, it is hard to find a closed form solution of option pricing formula under
an asset governed by a change point process. In this paper we derive a closed-form solution
of the valuation function for an American perpetual put option under an asset having a change
point. Structural changes are formulated through a change-point process with a Markov chain.
The modified smooth-fit technique is used to obtain the closed-form valuation function. We also
guarantee the optimality of the solution via the proof of a corresponding verification theorem.
Numerical examples are included to illustrate the results.

1. INTRODUCTION

We consider American perpetual put option pricing under an asset governed by a change
point process. We start with a set of geometric Brownian motions :

dX(t) = X(t)µ(α(t))dt+X(t)σ(α(t))dw(t) (1)

where α(t) ∈ {1, 2} is a two state Markov chain and w(t) is a standard Wiener process. Here,
µ(i) and σ(i) are constants for i ∈ {1, 2}. An American option is a derivative giving its
holder the right of exercising a share of stock at one’s choice of time τ ∈ [0, T ] with payoff
of (K −X(τ))+ = max(0,K − X(τ)) where T is the expiration date and K is the strike
price. Pricing an American option can be formulated as an optimal stopping problem. We con-
sider the corresponding optimal stopping problem under the framework of this change point
process.
Without any changing, the problem becomes a Black-Scholes model. The famous formula
gives a closed-form solution for the option prices under a GBM. Nevertheless, because the real
market is fickleness, the underlying asset usually does not follow a strict stationary log-normal
process with fixed parameter such as constant volatility and rate of return. Therefore, we as-
sume that the underlying asset follows a set of GBMs. Prior to this paper, McKean [7] had
studied the Black-Scholes case with HJB equation and smooth fit principle. Guo and Zhang
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[4] studied the regime-switching model with an irreducible chain and found a closed form so-
lution of the perpetual case.
In this work, structural changes are modeled through a change-point process, rather than a
Markov switching process. In a Markov switching process, a regime once occupied can be
visit again. However, this assumption is not reasonable if one believes that parameters deter-
mining a regime are unique and never repeated. Otherwise, in a change point specification, a
regime once occupied never comes again. Chib [1] formulated the change point process as a
specific unidirectional Markov process.
In this paper, we consider the case when there are two states and one of them is an absorbing
state which describes a regime after a change point. So if there is a jump of α(t), it may have
only jump in its lifetime. Without loss of generality, we call a state to state 1 and the absorbing
state to state 2. It is easy to see that if α(0) = 2, it will stay there and if α(0) = 1, it may jump
to state 2 at a later time.
Next, we formulate the problems and study the value functions dependent on the initial state. In
section 3, we use a smooth fit technique to find the value functions. Then in section 4, we show
that these functions are indeed the optimal reward functions. In Section 5, we report numerical
simulations. Section 6 concludes this work.

2. PROBLEM FORMULATION

We consider perpetual options, i.e., T = ∞. In this case, our optimal stopping problem
becomes the evaluation of

V ∗(x, i) = sup
0≤τ≤∞

E[e−rτ (K −Xτ )
+|X(0) = x, α(0) = i] (2)

where r > 0 is the discount factor, and τ is an F+ = σ{(w(s), α(s))|s ≤ t}-stopping time.
As a first step, we derive an optimal stopping rule for (2) with a restriction that the regime
switching can occur at most once. In addition, we suppose the initial state α(0) = 1 and it
jumps to state 2, and if α(0) = 2, then there is no jump afterward. We derive the corresponding
value function of (2) under these conditions.
Let λ be a rate to jump from state 1 to state 2, then our generator of the Markov chain has the
form(

−λ λ
0 0

)
with λ > 0, because the state 2 is absorbing.

Recall that when there is no regime switching, this problem becomes a McKean’s problem:
There exists a threshold x∗ such that the optimal stopping rule is τ∗ = inf{t > 0 : X(t) /∈
(x∗,∞)}, and the corresponding value function

V ∗(x) = sup
0≤τ≤∞

E[e−rτ (K −X(τ))+|X(0) = x]

= E[e−rτ∗(K −X(τ∗))+|X(0) = x]
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is given by

V ∗(x) =

{
(K − x∗)(x/x∗)γ if x > x∗,
K − x, if x ≤ x∗

for some γ < 0, and x∗ > 0. In our problem, V2(x) follows the McKean’s rule since state 2 is
absorbing. Therefore, V2(x) can be given as follows:

V2(x) =

{
(K − x2)(x/x2)

γ if x > x2,
K − x, if x ≤ x2

where the γ is the negative solution of r = µ2γ + 1
2σ(2)

2γ(γ − 1), i.e.

γ =
−(µ(2)− 1

2σ(2)
2)−

√
(µ(2)− 1

2σ(2)
2)2 + 2σ(2)2r

σ(2)2
, and x2 =

γK

γ − 1
> 0. from

McKean[7].

With a two-state Markov chain and with σ(1) ̸= σ(2), it is easy to see that (X(t), α(t)) is
a joint Markov process [3]. We expect that the optimal stopping rule is also of threshold type,
except that the threshold levels should vary depending on the state α(t). In other words, we
expect the existence of two thresholds x1, x2 ≤ K, so that the optimal stopping rule is given as

τ∗ = inf{t ≥ 0|(X(t), α(t)) /∈ D},

where
D = {(x, i)|V ∗(x, i) > (K − x)+}.

The set D is referred to as the continuation region. Using τ∗, the corresponding value functions
are

V ∗(x, i) = E[e−rτ∗(K −X(τ∗))+|X(0) = x, α(0) = i].

We consider the case when D can be represented by two threshold levels x1 and x2, i.e.,

D = {(x, 1)|x ∈ (x1,∞)} ∪ {(x, 2)|x ∈ (x2,∞)}.

Notice that x1 and x2 should depend on r,K, µ(i), σ(i), λ. For any x1 and x2, there are only
three possibilities, x1 < x2, x1 > x2 and x1 = x2. In the next sections we discuss each of
these cases and derive the values of these thresholds xi as well as the corresponding reward
functions (denoted as Vi(x)) under this type of stopping rule.

3. SOLVING THE PROBLEM

At any given time t, if α(t) = 1 and X(t) ≤ x1, then one should stop immediately and
obtain a payoff of (K −X(t))+; this follows from the definition of x1 and x2. In view of Ito’s
differential rule, this is translated into a set of differential equations. V1 satisfies :{

V1(x) = K − x if x ∈ [0, x1),
(λ+ r)V1(x) = xµ(1)V ′

1(x) +
1
2x

2σ(1)2V ′′
1 (x) + λV2(x) if x ∈ [x1,∞).

(3)
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Let β1 > 0 > β2 be the solutions of (λ+r) = (µ(1)− σ(1)2

2
)β+

1

2
σ(1)2β2. Then the general

solution of 3 is given by V1(x) = C1x
β1 + C2x

β2 + ϕ(x), where ϕ(x) is the special solution
of V1(x). Therefore, we need to determine the special solution for this problem.

For the solution of V1(x) of (3) where x ∈ [x1,∞), we need a change of variable. Substi-
tuting V1(x) = ϕ1(log x) = ϕ1(y), log(x) = y and log(x1) = y1, we have V ′

1(x) =
1
xϕ

′
1(y)

and V ′′
1 (x) =

1
x2ϕ

′′
1(y). The equation for V1(x) in (3) is changed in terms of y as

(λ+ r)ϕ1(y) = (µ(1)− σ(1)2

2
)ϕ′

1(y) +
1

2
σ(1)2ϕ′′

1(y) + λV2(e
y) (4)

To find the general equation for ϕ1(y), we use the follow characteristic function. Let β1 >

0 > β2 are the solutions of (λ + r) = (µ(1) − σ(1)2

2
)β +

1

2
σ2
1β

2. It is easy to see that

ϕ1(y) = C1e
β1y + C2e

β2y + ϕ(y), where ϕ(y) is the special solution of ϕ1(y).
Next, we find the special solution ϕ(y) on [log x1,∞). From (4), we have

ϕ′′(y) =
2

σ(1)2
(λ+ r)ϕ(y) + (− 2

σ(1)2
µ(1) + 1)ϕ′(y)− 2

σ(1)2
λV2(e

y).

Construct a matrix ODE

d

dy

(
ϕ(y)
ϕ′(y)

)
=

 0 1
2

σ(1)2
(λ+ r) − 2

σ(1)2
µ(1) + 1

(
ϕ(y)
ϕ′(y)

)
+

 0

− 2

σ(1)2
λV2(e

y)

 .

(5)
Therefore, the special solution is

(
ϕ(y)
ϕ′(y)

)
=

∫ y

y1

exp(A(y − s))

 0

− 2

σ(1)2
λV2(e

y)

 ds (6)

where the matrix A =

 0 1
2

σ(1)2
(λ+ r) − 2

σ(1)2
µ(1) + 1

 .

Let ym = max{y1, y2}. The integration (6) gives

ϕ(y) =
1

β2 − β1

∫ y

y1

(eβ1(y−s) − eβ2(y−s))(
2

σ2
1

λV2(e
s))ds

=
1

β2 − β1
[

∫ y

y1

−eβ2(y−s)(
2

σ2
1

λV2(e
s))ds+

∫ ym

y1

eβ1(y−s)(
2

σ2
1

λV2(e
s))ds

+
2

σ(1)2
λ
K − x2
(x2)γ

∫ y

ym

eβ1(y−s)eγsds]

.
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Consider the last term that∫ y
ym

eβ1(y−s)(eγs)ds = eβ1y

∫ y

ym

e(γ−β1)sds

= eβ1y 1

γ − β1
(e(γ−β1)y − e(γ−β1)ym)

=
1

γ − β1
(eγy − eβ1y+(γ−β1)ym).

We note that −eβ1y+(γ−β1)ym is unbounded part as y → ∞. Choose C1 =
2λ

(β2 − β1)σ(1)2
×

(

∫ ym

y1

e−β1sV2(e
s)ds +

K − x2
(x2)γ

1

γ − β1
e(γ−β1)ym) and recall V1(x) = C1x

β1 + C2x
β2 +

ϕ(log x). Then C1x
β1 and some unbounded parts of ϕ(log x) cancel each other, so that C1x

β1+
ϕ(log x) becomes bounded as y → ∞. Finally, we attain

V1(x) = C2x
β2 − 2λxβ2

(β2 − β1)σ(1)2
(

∫ x

x1

t−β2−1V2(t)dt−
(K − x2)x

γ

xγ2(γ − β1)
). (7)

where x ∈ [x1,∞). In order to determine C2 and x1, use the smooth fit condition at x = x1.
Then we obtain

K − x1 = C2x
β2
1 +

2λxβ2(K − x2)x
γ

(β2 − β1)σ(1)2x
γ
2(γ − β1)

,

−x1 = C2β2x
β2+1
1 − 2λ

(β2 − β1)σ(1)2
(V2(x1)−

(K − x2)x
γ
1

xγ2(γ − β1)
).

(8)

Eliminating C2, we have

2λ

(β2 − β1)σ(1)2
(V2(x1) +

(β2 − γ)(K − x2)x
γ
1

xγ2(γ − β1)
) = β2(K − x1) + x1.

The above equation gives x1, so C2 can be calculated by (8). In conclusion, the solution for
V1(x) is

V1(x) = K − x, if x ∈ [0, x1)

V1(x) = C2x
β2 − 2λxβ2

(β2 − β1)σ2
1

(

∫ x

x1

t−β2−1V2(t)dt−
(K − x2)x

γ

xγ2(γ − β1)
), if x ∈ [x1,∞)

(9)
with β1, β2 and C2 given above.

4. OPTIMALITY OF THE SOLUTION

We give a verification theorem to show that V1(x), V2(x) are indeed the value function.

Theorem 4.1. Suppose that (3) has a solution x∗1 such that 0 < x∗1 ≤ K. Assume V1(x) >
(K − x)+ on (x∗1,∞) and µ(1) ≥ 0. Define

D = {(x, i)|Vi(x) > (K − x)+}, i = 1, 2,
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and let
τ∗ = inf{t ≥ 0|(X(t), α(t)) /∈ D}

Then τ∗ is an optimal stopping time, and V1(x), V2(x) are the value functions.

Since V2(x) is derived by McKean’s rule, we prove the theorem only about V1(x). We need
a proposition before the proof of the theorem. For V1(x) ∈ C2, define

LV1(x) = xµ(1)
∂V1(x)

∂x
+

x2σ(1)2∂2V1(x)

2∂x2
+ λ(V2(x)− V1(x))− rV1(x).

and
D = {(x, 1)|x ∈ (x1,∞)} ∪ {(x, 2)|x ∈ (x2,∞)}.

Proposition 4.2. LV1(x) ≤ 0 on D.

Proof. It is obvious by the definition of LV1(x) that LV1(x) = 0 where x ≥ x1. Consider
LV1(x) where x ∈ [x2, x1]. Since V1(x) = K − x, V2(x) = (K − x2)(x/x2)

γ on [x2, x1],

LV1(x) = xµ(1)V ′
1(x) +

1

2
x2σ(1)2V ′′

1 (x) + λ(V2(x)− V1(x))− rV1(x)

= −xµ(1) + λ((K − x2)(x/x2)
γ − (K − x))− r(K − x)

We have LV1(x2) < 0 from the above and we know that LV1(x) is continuous on [x2, x1]
because V1(x) ∈ C2. In addition, since the second derivative is positive, i.e.,

(LV1(x))
′′ = λγ(γ − 1)(K − x2)x

−γ
2 xγ−2 > 0

on [x2, x1], LV1(x) is concave on [x2, x1]. So, if LV1(x1) < 0, the proposition is true. To
show LV1(x1) < 0, we use the fact that

lim
x→x−

1

[xµ(1)V ′
1(x)+λ(V2(x)−V1(x))−rV1(x)] = lim

x→x+
1

[xµ(1)V ′
1(x)+λ(V2(x)−V1(x))−rV1(x)]

(10)
by the smooth fit principle around x = x+1 , and

lim
x→x+

1

xµ(1)V ′
1(x) +

1

2
x2σ(1)2V ′′

1 (x) + λ(V2(x)− V1(x))− rV1(x) = 0 (11)

because LV1(x) = 0 on [x1,∞). Combining (10) with (11) implies that

lim
x→x−

1

xµ(1)V ′
1(x) + λ(V2(x)− V1(x))− rV1(x) = lim

x→x+
1

−1

2
x2σ(1)2V ′′

1 (x).

We know that limx→x+
1
V ′′
1 (x) > 0 because V1(x) is generally concave on [x1,∞]. It com-

pletes the proof of the proposition. Additionally, we see the limx→x−
1
LV1(x) is indeed negative

at the next numerical analysis section. 2
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Now we start the proof of the theorem.
Proof of the theorem. It is easy to see that V1(∞) = 0 and LV1(x) ≤ 0 on x ∈ D from the
above proposition. Using Dynkin’s formula, we have

d(e−rtV1(X(t))) = e−rtLV1(X(t))dt+ d(martingale).

A smooth approximation approach for variational inequalities in Øksendal[9] [p224] implies
that for any stopping time τ we obtain

V1(x) ≥ E[e−rτV1(Xτ )] ≥ E[e−rτ (K −Xτ )
+]. (12)

To show the optimality of τ∗, note that if τ∗ < ∞, then V1(X(τ∗)) = (K −X(τ∗))+. In
this case, Dynkin’s formula yields V1(x) = E[e−rτ∗(K − X(τ∗))+]. Otherwise, let Dk =
D ∩ {x < k}, for k = 1, 2, .... Let τk = inf{t ≥ 0|(X(t), α(t)) /∈ Dk}. Then we can show
that τk → τ∗ a.s. Moreover, as in [10, Theorems 4.5 and 4.6], we can show that τk < ∞ a.s.
for each k. Using the definition of τk with some large number k, we have

V1(X(τk)) = V1(X(τk))I{X(τk)=k} + V1(X(τk))I{X(τk)<k}.

Note that

V1(X(τk))I{X(τk)<k} = (K −X(τk))
+I{X(τk)<k} ≤ (K −X(τk))

+.

Moreover, not that 0 ≤ V1(x) ≤ K and erτkI{X(τk)=k} → 0, as k → ∞, a.s. It follows that
E[e−rτkV1(X(τk))I{X(τk)=k}] → 0. Therefore, as k → ∞, we have

V1(x) ≤ E[e−rτkV1(X(τk))] ≤ E[e−rτ∗(K −X(τk))
+]. (13)

From (12) and (13),
V1(X(τk)) = E[e−rτ∗(K −X(τ∗))+].

This completes the proof. 2

5. NUMERICAL SIMULATION

In this simulation, we observe the change of thresholds with varying several parameters.
First, we choose K = 2, r = 0.04, λ = 4, µ(1) = 0.07, σ(1) = 1, µ(2) = 0.09, σ(2) = 1.
The thresholds from the illustrated method in section 3 and McKean’s method are given by
(x1, x2) = (0.1602, 0.1619).

In Figure 1, V1 and V2 denote the value functions from the illustrated method, and McK-
ean’s method, respectively. The difference between V1 and V2 in Figure 1 represents the basic
structure of the optimal stopping policy in terms of threshold levels (x1, x2).
As the second, we examine the monotonicity of these threshold levels in terms of σ(1), λ and
K.

As the first, we vary only σ(1). The results for (x1, x2) are listed in Table 1. All levels
of x1 increase with the increasing of σ(1). This means that a larger σ(1) leads to a wider
continuation region, and then the threshold level is lower in put options.
Second, we vary K. Table 2 represent that (x1, x2) increase in K due to the fact that a larger
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FIGURE 1. Horizontal axis–Strike price; Vertical axis–Value of the function

K implies a higher transaction cost which in turn needs to be compensated by a higher return
level.
Finally, we vary λ. Table 3 implies that if λ increase, all values of x1 increase to the value
of x2. This is because a larger λ reads to a shorter period for α(t) to stay at α(t) = 1, and
it pursues x1 being closer to x2. As the last analysis, we check that limx→x−

1
LV1(x) < 0

in Table 4 under the condition x2 < x1. In our table, the condition x2 < x1 is hold when
σ(1) =0.6 or 0.8 under the same condition of other variables.

6. CONCLUSION

In this paper, we have obtained closed-form solutions of American perpetual put option
where the associated stochastic asset dynamics have a form of a change-point process; geomet-
ric Brownian motions with a two state Markov chain with one absorbing state. These results
can be used as an approximation to American options when the underlying asset has a change
point of the market mode on the option period, and with finite horizon T when T is large.
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TABLE 1. Dependency on σ(1)

σ(1) 0.6 0.8 1 1.2 1.4
x1 0.1983 0.1793 0.1602 0.1427 0.1277
x2 0.1619 0.1619 0.1619 0.1619 0.1619

TABLE 2. Dependency on K

K 1 2 3 4 5
x1 0.0801 0.1602 0.2402 0.3203 0.4004
x2 0.0810 0.1619 0.2429 0.3239 0.4048

TABLE 3. Dependency on λ

λ 2 4 6 8 10
x1 0.1596 0.1602 0.1604 0.1606 0.1607
x2 0.1619 0.1619 0.1619 0.1619 0.1619

TABLE 4. Negativeness of LV1(x1 − h) when x2 < x1

h 10−2 10−3 10−4 10−5

σ(1)=0.8 -0.0844 -0.0821 -0.0818 -0.0817
σ(1)=0.6 -0.0789 -0.0734 -0.0728 -0.0727
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