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RELATIONSHIPS BETWEEN AMERICAN PUTS AND CALLS ON

FUTURES CONTRACTS

SUK JOON BYUN AND IN JOON KIM

Abstract. This paper presents a formula that relates the optimal exercise bound-

aries of American call and put options on futures contract. It is shown that the

geometric mean of the optimal exercise boundaries for call and put written on the

same futures contract with the same exercise price is equal to the exercise price which

is time invariant. The paper also investigates the properties of American calls and

puts on futures contract.

1. Introduction

The seminal paper of Black (1976) provided a groundwork for the valuation of options

written on futures contracts and showed how to extend the Black-Scholes (1973) option

pricing formula to the case of European options on futures contracts. However, all of the

publicly traded futures options on the organized exchanges are of the American type;

i.e., they allow the holder to exercise them before the expiration date. Assuming that

the risk-free rate of interest is positive, American futures options are always subject to

early exercise and so American futures options must be worth strictly more than their

European counterparts. Therefore Black's formula does not provide a correct value and

there is no closed-form solution for American futures options.

Working from McKean's (1965) formulation of the free boundary problem, integral

formulations of American option values were independently derived by Kim (1990),

Jacka (1991), and Carr, Jarrow, and Myneni (1992). Kim (1990) derived the valuation

formulas by considering an option exercisable at a �nite number of points in time and

evaluating its continuous limit as the time intervals shrink to zero. Jacka (1991) ob-

tains the same valuation formulas using the probability theory applied to the optimal

stopping problem. Carr, Jarrow, and Myneni (1992) also obtain the formulas by con-

sidering the trading strategy which converts an American option into a European one.

Kim and Yu (1996) gives a more simpler and intuitive proof of the valuation formulas.

Valuation formulas for American futures options can be obtained as a special case of

these formulas. (One very comprehensive reference on options is that by Du�e 1992;
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it contains a considerable amount of background material on option valuation. For a

rigorous survey on the theory of American option pricing, see Myneni 1992).

The integral formulations of American option values yield a pair of nonlinear integral

equations, one is for calls and the other is for puts, that must be satis�ed by the optimal

exercise boundaries. The optimal exercise boundary is de�ned by the critical futures

price at or above (below) which it is optimal to exercise the American calls (puts)

on futures contracts. This paper presents a formula that relates the optimal exercise

boundaries of American call and put futures options, by exploiting the special structure

of these integral equations. It is shown that the geometric mean of the optimal exercise

boundaries for American call and put options written on the same futures contract with

the same exercise price is equal to the exercise price which is a time invariant constant.

This relationship between the optimal exercise boundaries enables us to investigate the

relationships between American call and put futures options.

The paper is organized as follows. Section 2 examines European options on futures

contracts. Following Black (1976), this section gives an identity between Black's for-

mulas for European call and put futures options. In Section 3, American options on

futures contracts are examined and the relationships between American call and put

futures options are presented. Concluding remarks are in Section 4.

2. European Options on Futures Contracts

Consider European call and put options written on a futures contract with exercise

price K and expiry date T . The underlying futures contract expires at or after time

T . Throughout the paper, the usual conditions are assumed that the markets are

perfect with continuous trading, there are no-arbitrage opportunities, the risk-free rate

of interest, r, is a positive constant, and the futures price Ft satis�es a stochastic

di�erential equation:

dFt = (�� r)Ft dt+ � Ft dWt ; t 2 [0; T ] (2.1)

whereW is a standard Brownian motion on a complete probability space (
;F ;Q) and
the coe�cients � and � are positive constants. Equation (2.1) implies that the futures

price follows a lognormal di�usion process with volatility parameter �.

In this setting, Black (1976) developed a variation of his earlier Black-Scholes (1973)

model to value European futures options. Let us denote the value functions of European

call and put at time t by c(F; �) and p(F; �) de�ned on domain D � f(F; �); 0 < F <

1; 0 < � � Tg, where F is the futures price and � = T � t is time to expiration. The

formulas for the prices may be expressed as:

c(F; �) = e�r� [F@(d1(F; � ;K)) �K@(d2(F; � ;K))] (2.2)

p(F; �) = e�r� [K@(�d2(F; � ;K))� F@(�d1(F; � ;K))] (2.3)
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where @(�) is the cumulative standard normal distribution function and

d1(F; � ;K) =
ln(F=K) + 1

2
�2�

�
p
�

(2.4)

d2(F; � ;K) =
ln(F=K)� 1

2
�2�

�
p
�

(2.5)

We will �rst present a useful identity between d1(�; �; �) and d2(�; �; �).

Lemma 2.1 For all x > 0, y > 0, and � > s � 0,

d1(x; � � s; y) = �d2

 
K2

x
; � � s;

K2

y

!
(2.6)

d2(x; � � s; y) = �d1

 
K2

x
; � � s;

K2

y

!
(2.7)

Proof of (2.6). Using equation (2.5), we see that

d2

 
K2

x
; � � s;

K2

y

!
=

ln
�
K2

x
=K

2

y

�
� 1

2
�2(� � s)

�
p
� � s

=
ln(y=x)� 1

2
�2(� � s)

�
p
� � s

= �d1(x; � � s; y)

where the last equality follows from equation (2.4).

Proof of (2.7). The result is immediate from equation (2.6). 2

We then give an identity between put and call value functions for European options on

futures contracts.

PROPOSITION 2.1 For all x > 0 and � > 0,

c(x; �) =
x

K
p

 
K2

x
; �

!
(2.8)

where K is the exercise price.

Proof. Black's European put pricing formula (2.3) gives

p

 
K2

x
; �

!
= e�r�

"
K@(�d2(K2=x; � ;K)) �

K2

F
@(�d1(K2=x; � ;K))

#
(2.9)

= e�r�
"
K@(d1(x; � ;K)) �

K2

F
@(d2(x; � ;K))

#
(2.10)
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where we have used Lemma 2.1 with y = K. Multiplying both sides of equation (2.10)

by x=K, we have

x

K
p

 
K2

x
; �

!
= e�r� [x@(d1(F; � ;K)) �K@(d2(x; � ;K))]

= c(x; �)

where the last equality follows from Black's European call pricing formula (2.2).

3. American Options on Futures Contracts

Continuing with the setup and notation of the previous section, now consider the

corresponding American call and put options written on the same futures contract.

With American futures options, there is always the possibility of early exercise whether

the underlying asset on which the futures contract is written pays dividends or not as

long as the risk-free rate of interest is positive.1 This implies that, for each time to

maturity � 2 (0; T ], there exists a critical futures price G(�)(B(�)) at or above (below)

which the American call (put) should be exercised immediately. The optimal exercise

boundary is de�ned as the time path of critical futures prices.

Let us denote the value functions of American call and put at time t by C(F; �)

and P (F; �) de�ned on the domain D. If the futures price is above (below) the opti-

mal exercise boundary, the American call (put) is dead and its value is de�ned to be

C(F; �) = F �K (P (F; �) = K �F ). Although no one yet has found a closed-form so-

lution for the values of live American futures options, the integral formulations express

the value of a live American option as the sum of the corresponding European option

value and the early-exercise premium. In summary, the American call and put futures

option values are given by:

C(F; �) =

�
F �K if F � G(�)

c(F; �) +
R �
0 �(F; � � s;G(s)))ds if F < G(�)

(3.1)

P (F; �) =

�
K � F if F � B(�)

p(F; �) +
R �
0  (F; � � s;B(s)))ds if F > B(�)

(3.2)

where c(F; �) and p(F; �) denote Black's formulas for European call and put futures
options, respectively, and

�(F; � � s;G(s)) = re�r(��s) [F@(d1(F; � � s;G(s))) �K@(d2(F; � � s;G(s)))] (3.3)

 (F; � � s;B(s)) = re�r(��s) [K@(�d2(F; � � s;B(s)))� F@(�d1(F; � � s;B(s)))](3.4)

We will give an identity between �(�; �; �) and  (�; �; �).

1This fact has been well established in Ramaswamy and Sundaresan (1985), Brenner, Courtadon,

and Subrahmanyam (1985), and Ball and Torous (1986).
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Lemma 3.1 For all x > 0, y > 0, and � > s � 0,

�(x; � � s; y) =
x
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x
; � � s;

K2

y

!

Proof. From equation (3.4), we have
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y
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K2

x
; � � s;
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!!#
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K2

x
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#
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where the second equality follows from Lemma 2.1 and the last equality follows from

equation (3.3). 2

By imposing an optimality condition on valuation formulas (3.1) and (3.2), the following

nonlinear integral equations are obtained that implicitly de�ne the optimal exercise

boundaries.2

G(�)�K = c(G(�); �) +

Z �

0
�(G(�); � � s;G(s))ds (3.5)

K �B(�) = p(B(�); �) +

Z �

0
 (B(�); � � s;B(s))ds (3.6)

Jacka (1991) and van Moerbeke (1976) address the questions of uniqueness and regu-

larity of the solution to integral equations (3.5) and (3.6). Although there is no explicit

solution available for the optimal exercise boundary, we explicitly know the limiting be-

haviour of the boundary. It can be easily checked that G(0)B(0) = G(1)B(1) = K2,

where G(0) and B(0) represent the limits of G(�) and B(�) as � tends to zero, and

similarly G(1) and B(1) represent the limits of G(�) and B(�) as � tends to in�nity.3

Note that G(1) and B(1) also stand for the critical futures prices for perpetual

American call and put with otherwise similar terms. The next proposition uses inte-

gral equations (3.5) and (3.6) to generate an explicit expression for B(�) in terms of G(�).

PROPOSITION 3.1 Assume that the integral equation (3.5) has a unique contin-

uous solution G(�) for � 2 [0; T ]. Then the integral equation (3.6) possesses a unique

continuous solution and the solution is simply given by

B(�) =
K2

G(�)
for � 2 [0; T ] (3.7)

2There are many other integral equations that de�ne the unique optimal exercise boundary. See,

for example, McKean (1965), Kim (1990), and Carr, Jarrow, and Myneni (1992)
3See Appendix for a proof of G(1)B(1) = K2.
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where K is the exercise price.

Proof. Let G(�) be the unique continuous solution of integral equation (3.5). Con-

sider then B̂(�) de�ned by

B̂(�) =
K2

G(�)
� 2 (0; T ] (3.8)

We will show that this B̂(�) satis�es integral equation (3.6). Now substitute B̂(�) into

equation (3.6). Then

p(B̂(�); �) +

Z �

0
 (B̂(�); � � s; B̂(s))ds

= p(K2=G(�); �) +

Z �

0
 (K2=G(�); � � s;K2=G(s))ds

=
K

G(�)
c(G(�); �) +

Z �

0

K

G(�)
�(G(�); � � s;G(s))ds

=
K

G(�)
(G(�)�K)

= K � B̂(�)

where the second equality follows from Proposition 2.1 and Lemma 3.1 with x = G(�)

and y = G(s), the third equality follows from equation (3.5), and the last equality

follows from equation (3.8). This proves that B̂(�) de�ned by (3.8) satis�es equation

(3.6).

To show that B̂(�) is the only continuous solution, suppose there exists another

continuous solution ~B(�) of equation (3.6). Then equation (3.5) would have another

continuous solution ~G(�) � K2= ~B(�) 6= G(�), which contradicts the hypothesis that

integral equation (3.5) has a unique continuous solution. Therefore we must have

B̂(�) = ~B(�); � 2 (0; T ], and there is only one continuous solution.4 2

Proposition 3.1 says that the geometric mean of the optimal exercise boundaries G(�)

and B(�) is equal to the exercise price; i.e.,
p
G(�)B(�) = K, for � 2 [0; T ]. This

relation gives a shortcut for computing the optimal exercise boundary of an American

call/put given the optimal exercise boundary of its counterpart. By rearranging and

taking logarithms on the relation (3.7) in Proposition 3.1, we obtain:

ln

�
G(�)

K

�
+ ln

�
B(�)

K

�
= 0 (3.9)

This says that the arithmetic mean of the logarithms of the optimal exercise boundaries

devided by the exercise price is equal to zero as shown in Figure 1. Note the symmetry

with respect to the time to maturity axis (� -axis).

4Following the same lines of arguments, Proposition 3.1 can be generalized for American options

on dividend-paying assets as follows: G(� ; r; �)B(� ; �; r) = K2 where r is the riskfree rate and � is the

dividend yield.
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Using Propositions 2.1 and 3.1, along with valuation formulas (3.1) and (3.2), the

following identity between put and call value functions for American futures options,

analogous to Proposition 2.1, obtains.

PROPOSITION 3.2 For all x > 0 and � � 0,

C(x; �) =
x

K
P

 
K2

x
; �

!
(3.10)

where K is the exercise price.5

Proof. American put valuation formula (3.2) gives

P

 
K2

x
; �

!
= p

 
K2

x
; �

!
+

Z �

0
 (K2=x; � � s;B(s))ds

=
K

x
c(x; �) +

Z �

0
 (K2=x; � � s;K2=G(s))ds

=
K

x
c(x; �) +

Z �

0

K

x
�(x; � � s;G(s))ds

=
K

x
C(x; �)

where the second equality follows from Propositions 2.1 and 3.1, the third equality

follows from Lemma 3.1 with y = G(s), and the last equality follows from American

call valuation formula (3.1). 2

Proposition 3.2 implies that if we know the value function of an American call/put

futures option we can easily determine the value function of its counterpart.

Option traders are interested not only in price but also in the hedge parameters

such as delta, gamma, and theta, which are used to evaluate and manage the risks of

options. Di�erentiating both sides of equation (3.10) with respect to x or with respect

to � , the following identities for the hedge parameters can also be obtained.

PROPOSITION 3.3 For all x > 0 and � � 0,

CF (x; �) =
1

K
P

 
K2

x
; �

!
�
K

x
PF

 
K2

x
; �

!
(3.11)

CFF (x; �) =

�
K

x

�3
PFF

 
K2

x
; �

!
(3.12)

C� (x; �) =
x

K
P�

 
K2

x
; �

!
(3.13)

5Grabbe (1983) originally proposed this relationship in the context of American currency options

pricing. McDonald and Schroder (1990) and Chesney and Gibson (1995) extend Grabbe's result to

American options on dividend-paying assets.
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where K is the exercise price.

It should be noted that Propositions 3.2 and 3.3 are valid for not only live but also

dead options.

Proposition 3.2 shows a relationship between values of American call and put futures

options at di�erent futures levels. Now consider a relationship between values at the

same futures level. Using equations (3.1), (3.2), Proposition 3.1 and put-call parity for

European futures options, we obtain the following put-call parity for American futures

options in terms of the optimal exercise boundary.

C +Ke�r� = P + Fe�r� +

Z �

0
re�r(��s) [F f@(d1) + @(�d1 � e)g (3.14)

�K f@(d2) + @(�d2 � e)g] ds

where C and P denote values for American call and put futures options at the same

futures level F , respectively, and

d1 = d1(F; � � s;G(s))

d2 = d2(F; � � s;G(s))

e =
ln
�
G(s)
K

�
�
p
� � s

� 0

4. Conclusion

This paper presents a formula that relates the optimal exercise boundaries of Amer-

ican call and put options written on the same futures contract with the same exercise

price. It is shown that the geometric mean of the put and call optimal exercise bound-

aries is equal to the exercise price which is a time invariant constant. In addition, this

paper provides certain kinds of symmetrical relationships between put and call value

functions available for both European and American futures options. The results are

important not only for gaining insight into the qualitative behavior of the value func-

tions and the optimal exercise boundaries, but are also useful in the design of e�ective

numerical methods.

5. Appendix

Proof of G(1)B(1) = K2. G(1) and B(1) are de�ned by

G(1) =
�K

� � 1
; � =

1
2
�2 +

q
1
4
�4 + 2�2r

�2

B(1) =
�K

� � 1
; � =

1
2
�2 �

q
1
4
�4 + 2�2r

�2
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Straightforward multiplication yields

B(1)G(1) =
��K2

(� � 1)(� � 1)

=
��K2

�� � (� + �) + 1

= K2

where we have used the fact that � + � = 1. 2
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