• 제목/요약/키워드: American call and put options

검색결과 3건 처리시간 0.014초

FINITE ELEMENT METHODS FOR THE PRICE AND THE FREE BOUNDARY OF AMERICAN CALL AND PUT OPTIONS

  • Kang, Sun-Bu;Kim, Taek-Keun;Kwon, Yong-Hoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.271-287
    • /
    • 2008
  • This paper deals with American call and put options. Determining the fair price and the free boundary of an American option is a very difficult problem since they depends on each other. This paper presents numerical algorithms of finite element method based on the three-level scheme to compute both the price and the free boundary. One algorithm is designed for American call options and the other one for American put options. These algorithms are formulated on the system of the Jamshidian equation for the option price and the free boundary. Here, the Jamshidian equation is of a kind of the nonhomogeneous Black-Scholes equations. We prove the existence and uniqueness of the numerical solution by the Lax-Milgram lemma and carried out extensive numerical experiments to compare with various methods.

  • PDF

RELATIONSHIPS BETWEEN AMERICAN PUTS AND CALLS ON FUTURES CONTRACTS

  • BYUN, SUK JOON;KIM, IN JOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제4권2호
    • /
    • pp.11-20
    • /
    • 2000
  • This paper presents a formula that relates the optimal exercise boundaries of American call and put options on futures contract. It is shown that the geometric mean of the optimal exercise boundaries for call and put written on the same futures contract with the same exercise price is equal to the exercise price which is time invariant. The paper also investigates the properties of American calls and puts on futures contract.

  • PDF

FINITE-DIFFERENCE BISECTION ALGORITHMS FOR FREE BOUNDARIES OF AMERICAN OPTIONS

  • Kang, Sunbu;Kim, Taekkeun;Kwon, Yonghoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권1호
    • /
    • pp.1-21
    • /
    • 2015
  • This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly. By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable. We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, $r{\leq}d$, long-time or short-time maturity T.