• Title/Summary/Keyword: Amended Soil

Search Result 234, Processing Time 0.03 seconds

Analysis of Fe-Deficient Inducing Enzyme and Required Time for Recovery of Nutritional Disorder by Fe-DTPA Treatment in the Fe-Deficient Induced Tomato Cultivars (토마토 품종별 철 결핍 유도후 Fe-DTPA 처리에 의한 영양장애 회복 소요시간과 철 결핍 유발물질 동정)

  • Lee, Seong-Tae;Kim, Min-Keun;Lee, Young-Han;Kim, Young-Shik;Kim, Yeong-Bong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.767-772
    • /
    • 2011
  • The purpose of this study was to find out required time for recovery of nutritional disorder by Fe-DTPA treatment in induced Fe-deficient tomato cultivars and to select stable Fe-chelate in high pH of nutrient solution. The pH levels of nutrient solution were amended with 6.0, 7.0, and 8.0. Then Fe-EDTA (Ethylenediaminetetraacetic acid, ferric-sodium salt), Fe-DTPA (Sodium ferric diethylenetriamine pentaacetate), and Fe-EDDHA (Ethylenediamine-N,N-bis (2-hydroxyphenylacetic acid) ferric-sodium salt)) were treated as Fe $2.0mg\;L^{-1}$ concentration. The Fe-DTPA and Fe-EDDHA were stable in the nutrient solution of pH 6.0~8.0 but Fe-EDTA in nutrient solution of pH 8.0 was to become insoluble by 25%. The Fe $2.0mg\;L^{-1}$ as Fe-DTPA was treated for recovery of Fe deficient tomato seedlings. In case of Redyoyo and Supersunroad cultivars, total chlorophyll and Fe contents of leaves were recovered as much as those of normal leaves in 5 days. The Rafito cultivar for complete recovery was taken 7 days. When Fe $2.0mg\;L^{-1}$ as Fe-DTPA was supplied to Fe-deficient tomato seedlings, in geotype, heme oxigenase recovered as much as normal leaves in 24 hours in the Rafito and Redyoyo. However, it was not remarkable difference by elapsed time in the Supersunroad.

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF

Effects of Lime and Humic Acid on the Cadmium Availability and its Uptake by Rice in Paddy Soils (논토양중 카드뮴 유효도와 수도의 흡수이행에 미치는 석회 및 Humic acid 시용효과)

  • Kim, Min-Kyeong;Kim, Won-Il;Jung, Goo-Bok;Park, Kwang-Lai;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • This study was conducted to how the effect of lime and humic acid on cadmium availability and ie uptake by plant grown in contaminated paddy soils with heavy metal. The treatment levels of lime were 2.5 and 5.0 ton/ha and that of humic acid were 1 and 2%. The contents of 0.1N HCl extractable Cd were reduced with lime and humic acid and were negatively correlated with CEC as well as soil pH. The sequential extraction procedure was used to fractionate the heavy metals in soils into the designated from exchangeable (0.5 M $KNO_3$) water soluble ($H_2O$), organically bound (0.5 M NaOH), carbonate (0.05 M $Na_{2-}$ EDTA) and sulfide/residual (4 M $HNO_3$). In soil amended with 2.5 ton/ha lime and 1% humic acia che- mical forms of Cd at tillering stage were predominant exchangeable + water soluble extractable Cd, whereas that at harvesting stage were predominant carbonate + sulfide/residual extractable Cd. The exchangeable forms of Cd in soil with lime and humic acid were negatively correlated with soil pH during the harvesting period. Total absorbed Cd of paddy rice tended to occur in the order of root > stem > leaf > brown rice. Cd contents of brown rice with lime and humic acid treatment were 0.09 and 0.08 mg/kg, respectively. That were lower than control, 0.20 mg/kg. It could be that treatment of lime and humic acid in polluted soil by heavy metals would reduce the uptake of heavy metals by piano and be a temporary method of reclamation at the highly heavy Metal contaminated soils.

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

Effect of Immature Compost on Available Nutrient Capability and Heavy Metal Accumulation in Soil for Lettuce (Lactuca sativa L.) Cultivation (퇴비 내 영양소 및 중금속이 상추 재배에 미치는 영향)

  • Phonsuwan, Malinee;Lee, Min Ho;Moon, Byeong Eun;Kim, Young Bok;Kaewjampa, Naruemol;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • The aim of this study was to evaluate effects of immature compost on the amount of nutrient content, heavy metal concentration, and application rate that were used for lettuce cultivation. The characteristics of the two composts (Compost A (CA) was immature compost and Compost B (CB) was mature compost) were evaluated upon mixing with commercial soil at 0%, 25%, 50%, and 75% (w/w). The poor chemical characteristics were appeared by use of immature compost as soil amendment; the 50% and 75% rates were weakly acidic at pH 5.39 and 5.50, respectively. The total carbon content at using of 75% of the immature compost and mature compost increased the most to 14.5 and 6.5% and it significantly increased concentrations of the total nitrogen and phosphorus compared to control. As for 75% mature compost rate increased significantly the concentrations of Cu ($128mg\;kg^{-1}$), Zn ($260mg\;kg^{-1}$), Pb ($0.32mg\;kg^{-1}$) and, Cd ($0.48mg\;kg^{-1}$) compared to control, and the highest As concentration increased significantly at 75% and 50% (6.69 and $6.28mg\;kg^{-1}$) including in 25% immature compost as $6.48mg\;kg^{-1}$. However, all of the high compost rates significantly decreased the shoot biomass of lettuce. The immature compost was potentially amended at an application rate of 25% due to a slight salinity and low risk to heavy metal uptake on lettuce growth. This use may be available if the rate is lower than that used in this trial.

Control Activities of Fungicides Against Garlic White Rot Caused by Sclerotium cepivorum (마늘 흑색썩음균핵병에 대한 살균제의 작용 특성)

  • Kim, Heongjo;Kim, Heung Tae;Min, Yi Gi
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • In order to control garlic white rot (Sclerotium cepivorum), which threatens garlic production in farmers fields, soil solarization (solar sterilization), sclerotia germination inducers and effective microorganisms as biological control agents, and chemical fungicides have been used. Among them, fungicide has been largely used to reduce garlic white rot. In this study, the antifungal activities of five fungicides, prochloraz(a.i. 25%, EC), tebuconazole (a.i. 25%, WP), flutolanil (a.i. 15%, EC), iminoctadine tris-albesilate (a.i. 40%, WP) and isoprothiolane (a.i. 40%, EC) with different mode of action, in mycelial growth, sclerotia germination and sclerotia production, were tested. The inhibitory effects of the 5 fungicides on the mycelial growth, and sclerotia germination and production of garlic white rot pathogen (S. cepivorum T11-2) were investigated on potato dextrose agar (PDA) and their control efficacies were evaluated on garlic flakes. There was no mycelial growth of S. cepivorum T11-2 on PDA amended with $0.8{\mu}g\;mL^{-1}$ of prochloraz or $100{\mu}g\;mL^{-1}$ of tebuconazole. Also prochloraz and tebuconazole inhibited perfectively the sclerotia germination of the pathogen at 10 and $1.0{\mu}g\;mL^{-1}$, respectively. In spite of a very low activity of isoprothiolane in mycelial growth and sclerotia germination of S. cepivorum T11-2, it showed a good inhibitory activity against sclerotia production of S. cepivorum T11-2 on PDA amended with $1.67{\mu}g\;mL^{-1}$. Prochloraz, tebuconazole and flutolanil showed above 70% of control value when they were treated at $100{\mu}g\;mL^{-1}$ using the garlic flake cutting-method.

Application of Liriope platyphylla, Ornamental Korean Native Plants, for Contaminated Soils in Urban Areas (도시 내 중금속 오염지의 관상식물로서 자생 맥문동(Liriope platyphylla)의 적용성 평가)

  • Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.81-87
    • /
    • 2014
  • Heavy metal pollution is a widespread global problem causing serious environmental concern. Heavy metals such as Cd, Pb, and Zn can induce toxicity in all organisms if the soil levels of contaminants reach critical values. The aim of the present study was to examine the application of Liriope platyphylla, an ornamental Korean native plant with great potential for contaminated soil in urban areas, to determine tolerance for Cd, Pb, and Zn. Plants were grown in amended artificial soil with Cd, Pb, and Zn at 0, 100, 250, and $500mg{\cdot}kg^{-1}$ for 7 months. The length of leaf, width of leaf, total leaf number, dead leaf number, new leaf number, chlorophyll contents, and ornamental value were monitored from May to August, during growth the period. The relative leaf length and leaf width displayed rapidly decreasing tendencies with an increasing Cd concentration beginning from 4 months after planting. The same decreasing tendency was observed in total leaf number, new leaf number, chlorophyll contents, and ornamental values showed a trend of Control> $Cd_{100}$ > $Cd_{250}$ > $Cd_{500}$. In Pb concentration treatments, the relative leaf length and leaf width were significantly lower in plants grown at $250mg{\cdot}kg^{-1}$ and $500mg{\cdot}kg^{-1}$ as compared to the Control, $100mg{\cdot}kg^{-1}$. The total leaf number, new leaf number, and dead leaf number did not show significant difference among treatments in Control and $Pb_{100}$ but chlorophyll contents and ornamental value decreased with increasing Pb supply concentration treatments. However, in Zn supply treatments, the relative leaf length was higher at $100mg{\cdot}kg^{-1}$ than the Control, $250mg{\cdot}kg^{-1}$, $500mg{\cdot}kg^{-1}$, but the relative leaf width decreased compared to the Control, $Zn_{100}$, $Zn_{250}$, and $Zn_{500}$. The total leaf number, dead leaf number, new leaf number, and ornamental value showed the lowest value in plants grown in $Zn_{500}$ treatment but no significant differences were found among other treatments.

Residual Effects of Fly Ash, Gypsum, and Shell on Growth and Qualities of Chinese Cabbage in Acidic Soils (산성토양에서 배추 생육과 품질에 대한 석탄회, 석고, 패각의 시용 잔효)

  • Ha, Ho-Sung;Kang, Ui-Gum;Lee, Hyub;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 1998
  • In order to evaluate the residual effects of bituminous coal fly ash, gypsum, oyster shell as soil amendments, Chinese cabbage was cultivated on acidic sandy loam soils with low boron content. The soils were amended in the upper 15cm with amendments in previous year and the growth and qualities of plants were analyzed. Amendments treated one year before were, in metric tons per hectare, i) none(Check) ; ii) 80 fly ash(FA) ; iii) 4 shell(SH) ; iv) 56 fly ash + 24 gypsum (FG) ; v) 40 fly ash + 24 gypsum + 0.8 shell(FGS). Yield response in fresh weight of Chinese cabbage was in order of 834% for FGS > 780% for FG > 755% FA > 193% for SH plants. Reducing sugar, vitamin-C, and total nitrogen contents of leaves depending on treatments showed the same tendencies as that in yields, whereas crude fibre opposite to them. In particular, FA, FG, and FGS plants showed normal growth without both boron deficiency symptoms which appeared in Check and SH plants and possibilities of accumulation of heavy metals. In any soils treated with the above amendments, however, magnesium was insufficient.

  • PDF

The Effect of Different Stocking Rate on Growth, Cast production and Conversion Efficiency of Organic Matter to Tissues of Earthworm (Eisenia fetida L.) (사육밀도의 차이가 지렁이의 생육, 체조직으로의 유기물 전환효율 및 분립생산에 미치는 영향)

  • Lee, Ji-Young;Lee, Ju-Sam
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.63-74
    • /
    • 2012
  • This experiment was carried out to investigate the effect of different stocking rate on growth, cast production and conversion efficiency of organic matter to tissues of earthworm. The carbon and nitrogen ratio (C/N) of tested Korean cow manure was 25.1, it was estimated an adequate ratio as feed for earthworms. The different stocking rates were 1:8(S-1), 1:16(S-2), 1:32(S-3) 1:64(S-4) 1:128(S-5) and 1:256 (S-6) as the ratios of earthworm fresh weight to biomass of Korean cow manure, respectively. A stocking rate of 1:32(S-3) was obtained a significantly highest values of increasing rate and conversion efficiency of organic matter to earthworm tissues. The mean values of increasin g rate of fresh weight and conversion efficiency of organic matter to earthworm tissues were 10.63 mg/day and 6.65% at the ratio of 1:32(S-3) with a rearing volume was $56.6cm^3$. A stocking rate of 1:8(S-1) was obtained a highest ratio of vermicasts, but showed a negative values of increasing rate and conversion efficiency of organic matter to earthworm tissues, it may due to severely food competition between individuals during the rearing periods. The pH, total nitrogen, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with stocking rate. Especially, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with rearing progressed. Vermicasts have the potential for improving plant growth when amended to container medium and soil according to increased availability of nutrients and improved physicochemical properties.