• Title/Summary/Keyword: Ambipolar transfer characteristics

Search Result 6, Processing Time 0.018 seconds

Electrical Characteristics of Ambipolar Thin Film Transistor Depending on Gate Insulators (게이트 절연특성에 의존하는 양방향성 박막 트랜지스터의 동작특성)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1149-1154
    • /
    • 2014
  • To observe the tunneling phenomenon of oxide semiconductor transistor, The Indium-gallum-zinc-oxide thin film transistors deposited on SiOC as a gate insulator was prepared. The interface characteristics between a dielectric and channel were changed in according to the properties of SiOC dielectric materials. The transfer characteristics of a drain-source current ($I_{DS}$) and gate-source voltage ($V_{GS}$) showed the ambipolar or unipolar features according to the Schottky or Ohmic contacts. The ambipolar transfer characteristics was obtained at a transistor with Schottky contact in a range of ${\pm}1V$ bias voltage. However, the unipolar transfer characteristics was shown in a transistor with Ohmic contact by the electron trapping conduction. Moreover, it was improved the on/off switching in a ambipolar transistor by the tunneling phenomenon.

Electrical Characteristics of Thin Film Transistor According to the Schottky Contacts (쇼키컨텍에 의한 박막형 트랜지스터의 전기적 특성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.135-139
    • /
    • 2014
  • To obtain the transistor with ambipolar transfer characteristics, IGZO/SiOC thin film transistor was prepared on SiOC with various polarities as a gate insulator. The interface between a channel and insulator showed the Ohmic and Schottky contacts in the bias field of -5V ~ +5V. These contact characteristics depended on the polarities of SiOC gate insulators. The transfer characteristics of TFTs were observed the Ohmic contact on SiOC with polarity, but Schottky contact on SiOC with low polarity. The IGZO/SiOC thin film transistor with a Schottky contact in a short range bias electric field exhibited ambipolar transfer characteristics, but that with Ohmic contact in a short range electric field showed unipolar characteristics by the trapping phenomenon due to the trapped ionized defect formation.

Semiconductor Device with Ambipolar Transfer Characteristics (양방향성 전달특성을 갖는 반도체소자에 관한 연구)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.193-194
    • /
    • 2018
  • Common transistor has unipolar characteristics in accordance with the doping carriers and operation by the threshold voltage, which is related to the stability. It is required the low threshold voltage of transistors to increase the stability of devices. The sensing ability is about the detection of how low current, therefore there is difference between the low current and leakage current. This study researched the ambipolar characteristics of transistors with very low currents to define the difference between common n-type transistors with unipolar properties.

  • PDF

Transistor Characteristics by the Effect of Leakage Current Cutoff of Schottky Contact (누설전류차단 쇼키접합 트랜지스터 전달특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.32-35
    • /
    • 2018
  • The current voltage characteristics of ZTO/SiOC were researched, and the conductivities of the ZTO films as a channel material were analyzed. The current of SiOC was abruptly decreased near 0V, and then the depletion layer was formed by the disappearance of charges in the region form -12V to +12V. SiOC with Schottky contacts near ${\sim}10^{-9}$ A had the cutoff effect of leakage currents. The conductivity of ZTOs prepared on SiOC was improved in the cutoff region of the leakage current of -12V

A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma

  • Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.246-252
    • /
    • 2002
  • Two-dimensional steady state simulations of planar type radio frequency inductively coupled plasma (RFICP) have been performed. The characteristics of RFICP were investigated in terms of power transfer efficiency, equivalent circuit analysis, spatial distribution of plasma density and electron temperature. Plasma density and electron temperature were determined from the equations of ambipolar diffusion and energy conservation. Joule heating, ionization, excitation and elastic collision loss were included as the source terms of the electron energy equation. The electromagnetic field was calculated from the vector potential formulation of ampere's law. The peak electron temperature decreases from about 4eV to 2eV as pressure increases from 5 mTorr to 100 mTorr. The peak density increases with increasing pressure. Electron temperatures at the center of the chamber are almost independent of input power and electron densities linearly increase with power level. The results agree well with theoretical analysis and experimental results. A single turn, edge feeding antenna configuration shows better density uniformity than a four-turn antenna system at relatively low pressure conditions. The thickness of the dielectric window should be minimized to reduce power loss. The equivalent resistance of the system increases with both power and pressure, which reflects the improvement of power transfer efficiency.

Study of a large-area graphene transistor on a CaF2 substrate using a full-coverage polymer film as an additional dielectric

  • Yoojoo Yun;Jinseok Oh;Yoonhyuck Yi;Hyunkyung Lee;Byeongwan Kim;Haeyong Kang
    • Journal of the Korean Physical Society
    • /
    • v.81
    • /
    • pp.942-947
    • /
    • 2022
  • We report the electrical transport properties of a dual-gate graphene device placed on a CaF2 substrate. A hexagonal boron nitride top-gate dielectric was introduced to confirm the electrical characteristics of the CaF2/graphene transistor because it is difficult to inject sufficient carriers through the CaF2 substrate owing to its thickness of 500 ㎛, and the typical ambipolar behavior of graphene with a slight n-doping effect was clearly observed. In addition, we used a polymethyl methacrylate (PMMA) film as a top-gate dielectric for large-scale graphene devices grown via chemical vapor deposition, which was transferred onto a CaF2 substrate. We controlled the high gate leakage current caused by the breakdown of the polymer due to non-uniformity by applying the film-transfer process rather than the direct coating method on the graphene device. Furthermore, the transport properties of large-area graphene in contact with CaF2 are discussed with respect to the effect of top-contacted PMMA.