• Title/Summary/Keyword: Ambient vibration tests

Search Result 77, Processing Time 0.029 seconds

Modal analysis and ambient vibration measurements on Mila-Algeria cable stayed bridge

  • Kibboua, Abderrahmane;Farsi, Mohamed Naboussi;Chatelain, Jean-Luc;Guillier, Bertrand;Bechtoula, Hakim;Mehani, Youcef
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.171-186
    • /
    • 2008
  • The seismic response analysis of an existing bridge needs a mathematical model that can be calibrated with measured dynamic characteristics. These characteristics are the periods and the associated mode shapes of vibration and the modal damping coefficients. This paper deals with the measurements and the interpretation of the results of ambient vibration tests done on a newly erected cable stayed bridge across the Oued Dib River at Mila city in Algeria. The signal analysis of ambient vibration records will permit to determine the dynamic characteristics of the bridge. On the other hand, a 3-D model of the bridge is developed in order to assess the frequencies and the associated modes of vibration. This information will be necessary in the planning of the test on the site (locations of the sensors, frequencies to be measured and the associated mode shapes of vibration). The frequencies predicted by the finite element model are compared with those measured during full-scale ambient vibration measurements of the bridge. In the same way, the modal damping coefficients obtained by the random decrement method are compared to those of similar bridges.

Estimation of Dynamic Characteristics of Existing Dam Floodgate Using Ambient Vibration (상시 진동을 이용한 댐 수문의 동특성 추정)

  • Kim, Nam-Gyu;Lee, Jong-Jae;Bea, Jung-Ju
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.343-350
    • /
    • 2011
  • Recently, as the catastrophic disasters due to earthquake happen frequently all over the world, it draws lots of attention to seismic capacity evaluation and/or structural integrity assessment of deteriorated civil infra-structures. However, there have been few studies on the existing dam flood gates, expecially in Korea. In this study, a proper vibration testing method applicable to a dam flood gate has been suggested, since the dynamic characteristics of a darn flood gate can be fundamental data for seismic capacity evaluation or structural integrity assessment. The frequency domain decomposition technique has been incorporated for modal parameter identification. Two kinds of vibration tests using an impact hammer and ambient vibration sources were carried out on two types of dam floodgates with different shapes. Through the field tests, the effectiveness of the ambient vibration tests were verified.

Instrumentation and Structural Health Monitoring of Bridges (교량구조물의 헬스모니터 링을 위한 진동계측)

  • 김두기;김종인;김두훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.108-122
    • /
    • 2001
  • As bridge design is advancing toward the performance-based design. it becomes increasingly important to monitor and re-evaluate the long-term structural performance of bridges. Such information is essential in developing performance criteria for design. In this research. sensor systems for long-term structural performance monitoring have been installed on two highway bridges. Pre1iminary vibration measurement and data analysis have been performed on these instrumented bridges. On one bridge, ambient vibration data have been collected. based on which natural frequencies and mode shapes have been extracted using various methods and compared with those obtained by the preliminary finite element analysis. On the other bridge, braking and bumping vibration tests have been carried out using a water truck In addition to ambient vibration tests. Natural frequencies and mode shapes have been derived and the results by the breaking and bumping vibration tests have been compared. For the development of a three dimensional baseline finite element model, the new methodology using a neural network is proposed. The proposed one have been verified and applied to develop the baseline model of the bridge.

  • PDF

Comparison of the Natural Period Obtained by Eigenvalue Analysis and Ambient Vibration Measurement in Bearing-Wall Type Apartment (고유치해석과 진동계측을 통한 벽식 공동주택의 고유주기 비교)

  • Yoon, Sung-Won;Jeong, Sug-Chang;Lim, In-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.43-50
    • /
    • 2006
  • This paper is concerned with the natural periods of ambient vibration and eigenvalue analysis. Ambient vibration tests were conducted to four bearing-wall reinforced concrete buildings ranging from twelve to nineteen stories. The performance of modeling in eigenvalue analysis was investigated using consideration of rigidity out of the plane in the slab and the non-structural bearing wall. Measured natural period was also compared with the value by the KBC2005. Natural period of the short direction in eigenvalue analysis is well fitted with the measured one. In the other hand, Natural period of the long direction in eigenvalue analysis is slightly more overestimated than the measured one. Natural period of the long direction in eigenvalue analysis was found to be enhanced by considering the effect of the stiffness out of the plane of the slab and non-structural wall in the structural modeling.

  • PDF

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

The Dynamic Characteristics for Low-rise Reinforced Concrete Buildings by Vibration Measurements (진동계측에 의한 저층 철근콘크리트조 건물의 동적특성)

  • Kang, Dong-Gyun;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.47-55
    • /
    • 2003
  • This paper is concerned with the dynamic characteristics of buildings, especially with the measurement of the natural frequencies(natural periods) and the damping. Process of ambient vibration and synchronized human excitation tests for natural period and damping are given. Data from measurement on 16 reinforced concrete buildings in Seoul and Seoul national university of technology are given. 16 Low-rise Reinforced concrete buildings are measured for ambient vibration to obtain the vibrations characteristics. The natural periods obtained by ambient vibration measurements are compared with those of forecast model suggested by standards and foreign researchers. The natural periods show a clear dependence on building height. On the other hand, the damping ration scatter under the influence of various factors, for example, building height and natural frequency.

  • PDF

Forced Vibration Testing of a Four-Story Reinforced Concrete Frame Building (철근콘크리트조 4층 골조건물의 강제진동실험)

  • Yu, Eun-Jong;Wallace, John W.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.27-38
    • /
    • 2007
  • A series of forced vibration tests and ambient vibration measurement was conducted on a four-story reinforced concrete building damaged in the 1994 Northridge earthquake. Both low amplitude broadband and moderate amplitude harmonic excitation were applied using a linear shaker and two eccentric mass shakers, respectively, and ambient vibrations were measured before and after each forced vibration test. Accelerations, interstory displacements, and curvature distributions were monitored using accelerometers, LVDTs and concrete strain gauges. Natural frequencies and the associated mode shapes fur the first 7 modes were identified. Fundamental frequencies determined from the eccentric mass shaker tests were 70% to 75% of the values determined using ambient vibration data, and 92% to 93% of the values determined using the linear shaker test data. Larger frequency drops were observed in the NS direction of the building, apparently due to damage that was induced during the Northridge earthquake.

Ambient and forced vibration testing with numerical identification for RC buildings

  • Aras, Fuat
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.809-822
    • /
    • 2016
  • Reinforced concrete buildings constitute the majority of the building stock of Turkey and much of them, do not comply the earthquake codes. Recently there is a great tendency for strengthening to heal their earthquake performance. The performance evaluations are usually executed by the numerical investigations performed in computer packages. However, the numerical models are often far from representing the real behaviour of the existing buildings. In this condition, experimental modal analysis fills a gap to correct the numerical models to be used in further analysis. On the other hand, there have been a few dynamic tests performed on the existing reinforced concrete buildings. Especially forced vibration survey is not preferred due to the inherent difficulties, high cost and probable risk of damage. This study applies both ambient and forced vibration surveys to investigate the dynamic properties of a six-story residential building in Istanbul. Mode shapes, modal frequencies and damping ration were determined. Later on numerical analysis with finite element method was performed. Based on the first three modes of the building, a model updating strategy was employed. The study enabled to compare the results of ambient and forced vibration surveys and check the accuracy of the numerical models used for the performance evaluation of the reinforced concrete buildings.

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

Natural Frequency of Tall Building Through Ambient Vibration Measurement (고층건물의 상시진동계측을 통한 고유진동수)

  • Yoon, Sung Won;Ju, Young Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • Wind-induced motions, like acceleration for instance, often influence designs for high-rise buildings. As a consequence, correct assessment of natural frequency becomes important. The empirical expressions used to quantify this parameter at the design phase tend to yield values that are significantly different from each other. This paper is concerned with the natural periods of steel buildings. It describes the vibration measurement methods that were employed for testing buildings. This paper will also present reliable methods of assessing the natural period from ambient vibration tests. Data from measurements on 21 buildings in Seoul were provided while 21 buildings were tested by ambient vibration measurements to obtain the natural periods. While regression formulas of natural periods for steel-frarried tall buildings were suggested,the obtained formula was compared with the empirical expressions of structural standards and the Eigen-value analysis.