• 제목/요약/키워드: Ambient vibration

검색결과 328건 처리시간 0.025초

Long run ambient noise recording for a masonry medieval tower

  • Casciati, S.;Tento, A.;Marcellini, A.;Daminelli, R.
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.367-376
    • /
    • 2014
  • Ambient vibration techniques are nowadays a very popular tool to assess dynamic properties of buildings. Due to its non destructive character, this method is particularly valuable, especially for health monitoring of historical monuments. The present ambient vibration experiment consists on the evaluation of vibration modes of a Medieval tower. Situated in Soncino (close to Cremona, in the Northern Italian region named Lombardia), the tower of 41.5 meters height has been monitored by seismometers located at different points inside the structure. Spectral ratios of the recorded ambient vibrations clearly identify a fundamental mode at about 1 Hz, with a slight difference in the two horizontal components. A second mode is also evidenced at approx 4-5 Hz, with a moderate degree of uncertainty. The records of a ML 4.4 earthquake, occurred during the monitoring period, confirm the information obtained by microtremor analysis. Daily variations of both 1st and 2nd mode were detected: these variations, of an amount up to 2%, seem to be well related with the temperature.

상시진동신호를 이용한 교량의 감쇠특성 추정 (Estimation of Damping Properties of Bridge Structures under Ambient Vibration Condition)

  • 김성완;박동욱;김남식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.93-100
    • /
    • 2008
  • Recently, due to the advanced measurement techniques, long-term health monitoring systems have been frequently applied to existing bridges. It is known that damping ratios as one of dynamic properties would be an important parameter for evaluating the bridge condition. However, damping ratios may be normally varied depending on the external loading effects on bridges. In general, both the logarithmic decrement and the half-power band width method as a conventional method can be simply used for evaluating the damping ratios accurately when bridge response signals are measured under free vibration conditions. In this study, the Hilbert-Huang transform and the extended Kalman filter were applied to evaluate the damping ratio by using the bridge acceleration signals measured under ambient vibration condition. From the results under ambient vibration condition of bridges, it was examined that the damping ratios evaluated from both the Hilbert-Huang transform and the extended Kalman filter could be more reliable than those from conventional methods.

  • PDF

저주파수용 ZnO 압전 마이크로 전원의 설계와 분석 (Design and analysis of ZnO piezoelectric micro power generators with low frequency)

  • 정귀상;윤규형
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

Modal parameter identification of in-filled RC frames with low strength concrete using ambient vibration

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.137-149
    • /
    • 2014
  • In this study, modal parameters such as natural frequencies, mode shapes and damping ratios of RC frames with low strength are determined for different construction stages using ambient vibration test. For this purpose full scaled, one bay and one story RC frames are produced and tested for plane, brick in-filled and brick in-filled with plaster conditions. Measurement time, frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques are used together. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames. The results indicate that modal parameters change significantly depending on the construction stages. In addition, Infill walls increase stiffness and change the mode shapes of the RC frame. There is a good agreement between mode shapes obtained from brick in-filled and in-filled with plaster conditions. However, some differences are seen in plane frame, like expected. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimize by finite element model updating using some uncertain parameters such as material properties, boundary condition and section properties to reflect the current behavior of the RC frames.

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

장기간 상시계측을 통한 감쇠율 평가 (Damping Ratio Evaluation Using Long-Term Ambient Vibration)

  • 김용철;윤성원
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.77-84
    • /
    • 2018
  • The identification of damping ratios in buildings is a well-known problem and appears to be of important and crucial interest in the safety and serviceability design. When compared to an estimation of the stiffness, i.e. natural frequency, and mass, the damping ratio is the most difficult quantity to determine. Many previous studies have examined the characteristics of damping ratios from ambient vibration, but the measurement time is roughly within 2 hours. In this paper, characteristics of damping ratios and natural frequencies of 4 story RC building were investigated using long-term ambient vibration. Free vibrations were obtained using random decrement technique, and damping ratios were evaluated by the envelop function, continuous wavelet transform, and logarithmic decrement. It was found that although the natural frequencies show little variations with time, the damping ratios show some variations with time and the largest variations found in the damping ratios obtained from the continuous wavelet transform. The damping ratios from the envelop function showed the smallest mean and standard deviation. And the probability distribution of damping ratios seems to follow the logarithmic normal distribution.

휴대폰 앱을 이용한 건물 수평진동의 상시진동계측 (Ambient Vibration Measurement of Buildings Horizontal Vibration Using a Mobile Phone Application)

  • 문상현;윤성원
    • 한국공간구조학회논문집
    • /
    • 제15권3호
    • /
    • pp.77-83
    • /
    • 2015
  • The cases of conducting the vibration measurement using the mobile phone with regard to the building's horizontal vibration are very rare in Korea and foreign countries. Therefore, this study analyzed the horizontal vibration nature of the building using the mobile phone targeting 5 tall buildings, and reviewed about the applicability of the mobile phone vibration measuring instrument through the comparison/verification with the data of the existing vibration measuring instrument. The peak of the measured time series waveform was measured clearly and it showed a similar value to the existing natural frequency.

사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구 (Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable)

  • 서주원;고현무
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

Vibration performance of composite steel-bar truss slab with steel girder

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.577-589
    • /
    • 2019
  • In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor ${\beta}_{rp}$ describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.