• Title/Summary/Keyword: Ambient measurement

Search Result 501, Processing Time 0.031 seconds

Measurement of Convective Heat Transfer Coefficients of Horizontal Thermal Screens under Natural Conditions (온실 스크린의 대류열전달계수 측정)

  • Rafiq, Adeel;Na, Wook Ho;Rasheed, Adnan;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Convective heat transfer is the main component of greenhouse energy loss because the energy loss by this mechanism is greater than those of the other two components (radiative and conductive). Previous studies have examined the convective heat transfer coefficients under natural conditions, but they are not applicable to symmetric thermal screens with zero porosity, and such screens are largely produced and used in Korea. However, the properties of these materials have not been reported in the literature, which causes selectivity issues for users. Therefore, in this study, three screens having similar color and zero porosity were selected, and a mathematical procedure based on radiation balance equations was developed to determine their convective heat transfer coefficients. To conduct the experiment, a hollow wooden structure was built and the thermal screen was tacked over this frame; the theoretical model was applied underneath and over the screen. Input parameters included three components: 1) solar and thermal fluxes; 2) temperature of the screen, black cloth, and ambient air; and 3) wind velocity. The convective heat transfer coefficients were determined as functions of the air-screen temperature difference under open-air environmental conditions. It was observed from the outcomes that the heat transfer coefficients decreased with the increase of the air-screen temperature difference provided that the wind velocity was nearly zero.

Comparisons of sample preparation (acid digestion and microwave digestion) and measurement (inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry) in the determination of bone lead (골중납 측정의 시료 전처리 (산분해법과 마이크로웨이브 분해법)와 측정 방법 (유도결합 플라즈마 질량분석법과 흑연로 원자 흡수 분광 광도법)의 비교)

  • Yoon, Chungsik;Choi, Inja;Park, Sungkyun;Kim, Rokho
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.152-158
    • /
    • 2003
  • This study was conducted to evaluate two sample digestion procedures and instrumental determination parameters for analysis of lead in bone. Amputated human legs were treated by acid digestion or microwave dissolution prior to spectrometric analysis. Inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GF-AAS) were used for determining bone lead levels. Recovery efficiencies using standard reference material from acid digestion measured by ICP-MS were in good agreement with those of the certified value, but in cases of acid digestion by GF-AAS and microwave digestion by both two methods, recovery underestimated and overestimated, respectively. For the bone samples, the lead concentrations obtained by ICP-MS after acid digestionwere in good agreement with those by GF-AAS (correlation coefficient = 0.983), but GF-AAS gave systematically higher values than ICP-MS. While a good agreement between two analytical methods after microwave digestion was also obtained (correlation coefficient = 0.950), bone lead concentrations from microwave were relatively higher than those from acid digestion. In conclusion, the use of the simple nitric acid digestion procedure at an ambient temperature coupled to ICP-MS seems to be efficient for the determination of lead in bone in consideration for both the convenience and validity.

A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval Ship (함정 적외선 신호저감 장치의 열 유동해석 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.740-746
    • /
    • 2017
  • Infrared signatures emitted from hot exhaust gases generated by the internal combustion engine and generator of naval ships and from the metal surfaces of the funnel have become the targets of infrared homing missiles, which is the main cause of a reduced survivability of naval ships. The infrared signatures from the exhaust gas and the metal surface of a funnel can be reduced by installing an infrared signature suppression (IRSS) system on a ship. The IRSS system consists of three parts: an eductor that generates turbulent flow of the exhaust gas, a mixing tube that mixes the exhaust gas with ambient air, and a diffuser that forms an air film using the pressure difference between the inside and outside air. As a basic study to develop an IRSS system using domestic technology, this study analyzed the model test conditions of an IRSS system developed by an overseas engineering company and installed on a domestic naval ship, and a numerical heat-flow analysis was conducted based on the results of the aforementioned analysis. Numerical heat-flow analysis was performed using a commercial numerical-analysis application, and various turbulence models were considered. As a result, the temperature and velocity of the exhaust gas at the educator inlet and diffuser outlet and that of the metal surface of the diffuser were measured, and found to agree well with the measurement results of the model test.

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

Study of spatial temperature distribution during combustion process in a high temperature and pressure constant volume chamber (고온 고압 정적 연소실에서 연소과정에 따른 온도 분포 측정)

  • Kim, Ki-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.345-350
    • /
    • 2017
  • Downsizing is widely applied to diesel engines in order to improve fuel efficiency and reduce exhaust emissions. Engine sizes are becoming smaller but pressure and temperature inside combustion chambers are increasing. Therefore, research for fuel spray under high pressure and temperature conditions is important. A constant volume chamber which simulates high temperature and pressure likely to be found in diesel engines was developed in this study. Pressure and temperature were increased abruptly because of ignition of the pre-mixture in the constant volume chamber. Then pressure and temperature were gradually decreased due to the heat loss through the chamber wall. Fuel spray occurred when temperature and pressure were reached at the target condition. In this experiment, the temperature condition should be exactly defined to understand the relation between fuel evaporation and ambient temperature. A fast response thermocouple was developed and used to measure the temporal and spatial temperature distribution during the combustion process inside the combustion chamber. In the results, the core temperature was slightly higher than the bulk temperature calculated by the gas equation. Ed-note: do you want to say 'ideal gas equation'? This was attributed to the heat transfer loss through the chamber wall. The vertical temperature deviation was higher than the horizontal temperature deviation by 5% which resulted from the buoyancy effect.

Field Performance Evaluation of Candidate Samplers for National Reference Method for PM2.5 (PM2.5 국가기준측정장비 선정을 위한 비교 측정 연구)

  • Lee, Yong Hwan;Park, Jin Su;Oh, Jun;Choi, Jin Soo;Kim, Hyun Jae;Ahn, Joon Young;Hong, You Deog;Hong, Ji Hyung;Han, Jin Seok;Lee, Gangwoong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.157-163
    • /
    • 2015
  • To establish National Reference Method (NRM) for $PM_{2.5}$, operational performance of 5 different commercial gravimetric-based $PM_{2.5}$ measuring instruments was assessed at Bulkwang monitoring station from January 23, 2014 to February 28, 2014. First, physical properties, design, and functional performance of the instruments were assessed. Evaluation was carried out to determine whether operating method for the instruments and levels of QA/QC activities meet the data quality objectives (DQOs). To verify whether DQOs were satisfied, reproducibility of QA/QC procedures, accuracy, relative sensitivity, limit of detection, margin of error, and coefficient of determination of the instruments were also evaluated. Results of flow rate measurement of 15 candidate instruments indicated that all the instruments met performance criteria with accuracy deviation of 4.0% and reproducibility of 0.6%. Comparison of final $PM_{2.5}$ mass concentrations showed that the coefficient of determination ($R^2$) values were greater than or equal to 0.9995, and concentration gradient ranged from 0.97 to 1.03. All the instruments satisfied criteria for NRM with the estimated precision of 1.47~2.60%, accuracy of -1.90~3.00%, and absolute accuracy of 1.02~3.12%. This study found that one particular type of measuring instrument was proved to be excellent, with overall evaluation criteria satisfied.

Primary Production System in the Southern Waters of the East Sea, Korea I. Biomass and Productivity (한국동해 남부해역의 일차생산계 I. 생물량과 생산력)

  • SHIM, JAE HYUNG;YEO, HWAN GOO;PARK, JONG GYU
    • 한국해양학회지
    • /
    • v.27 no.2
    • /
    • pp.91-100
    • /
    • 1992
  • For the study on the structure and characteristics of the primary production system in the southern waters of the East Sea, chlorophyll, phytoplankton standing stocks. nutrients and hydrographic properties were investigated and analyzed in conjunction with measurement of C-14 based primary productivity. The primary productivity was relatively high in comparison with the previous studies, ranging from 284 to 4,574 mgC$.$m/SUP -2/$.$day /SUP -1/ and averaged to be 2,000 mgC$.$m/SUP 02/$.$day/SUP -1/. The standing stocks within the euphotic zone were fairly high, but ambient inorganic nitrogenous nutrient concentrations were too low to support the high production. This implied that there might be active recycling of nitrogenous nutrients by heterotrophic processes and the upward flux of nutrients by vertical mixing. Subsurface chlorophyll maxima were continuously observed in the lower parts of the euphotic layer and the depth coincided with the nutricline rather than isopycnal surfaces, supporting the view that chlorophyll distributions and primary production were primarily influenced by nutrient supply. Despite low nutrient concentrations, phytoplankton standing stocks and production were fairly high and the fraction of autotrophic nano- and picoplankton production was significant.

  • PDF

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.

Seasonal variation in growth of Berkshire pigs in alternative production systems

  • Park, Hyeon-Suk;Oh, Sang-Hyon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.749-754
    • /
    • 2017
  • Objective: The objective of the present study was to investigate the effects of farrowing month (FM), parity and sex on the growth performance of Berkshire swine raised in alternative production systems. Methods: A total of 40 farrowing records from 27 sows and 1,258 body weight (BW) records from 274 piglets collected over a two-year period were used for the analysis. The BWs were recorded at birth, weaning (28 d), 56, 84, 112, and 140 days. Any BW not recorded on schedule was recalculated to conform the days of age among corresponding BW records, using growth curves drawn with polynomial functions whose power was determined by the number of existing observations for each individual. Results: The mean parity (${\pm}$standard deviation) of the sows was $3.42{\pm}2.14$. The sows that farrowed in June had the lowest number of total born with an average of $6.25{\pm}2.22$ piglets per sow. However, the lowest average number of piglets weaned at day 28 was found in sows that farrowed in May, as well as the highest number recorded for the stillborn piglets with an average of 2.67 piglets per sow. Moreover, the smallest increase in weight from birth to weaning occurred in piglets that were farrowed in May, which also corresponds with the average daily gain (ADG) of 0.29 kg and the last recorded weight measurement on day 140 of $41.69{\pm}1.45kg$. Contrastingly, the highest growth rate was found among pigs farrowed in June, with the largest increase in weight of 7.55 kg from birth to weaning, the highest ADG of 0.51 kg from birth to 140 day of age and the highest BW of $74.70{\pm}1.86kg$ recorded on day 140. Conclusion: Pigs farrowed in June also had the least number of piglets that died between birth and weaning. The zone of thermal comfort found in sows reared in indoor confinement systems did not improve the reproductive performance of the sows reared in an outdoor, alternative production system, while the growth performance of the piglets was improved when the ambient temperature was consistently hot or consistently cold.

A comparative analysis of volatile organic compound levels in field samples between different gas chromatographic approaches (분석기법의 차이에 따른 현장시료의 VOC 분석결과 비교연구: 분석오차의 발생 양상과 원인)

  • Ahn, Ji-Won;Pandey, Sudhir Kumar;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.465-476
    • /
    • 2010
  • In this study, a number of volatile organic compounds (VOCs) including benzene, toluene, p-xylene, styrene, and methyl ethyl ketone were analyzed from samples collected in ambient air and under the field conditions. These samples were analyzed independently by two different set-ups for VOC analyses, i.e., between [1] gas chromatography/flame ionization detector with tube sampling - (F-T system) and [2] gas chromatography/mass spectrometer with bag sampling (M-B system). The analytical results derived by both systems showed fairly similar patterns in relative sense but with moderately large differences in absolute sense. The results of M-B system were high relative to F-T system with the F-T/M-B ratio below 1. If the relative biases of the two measurement techniques are derived in terms of percent difference (PD) in concentration values, the results were generally above 35% on average. A student t-test was applied to investigate the statistical significance of those differences between the systems. The results of both analytical systems were different at 95% confidence level for toluene, p-xylene, styrene, and methyl ethyl ketone (P < 0.043). However, F-T and M-B systems showed strong correlations for toluene and p-xylene. The observed bias is explained in large part by such factors as the differences in standard phases used for each system and the chemical loss inside the bag sampler.