• Title/Summary/Keyword: Ambient gas

Search Result 734, Processing Time 0.031 seconds

A Study on the Mixture Formation Process of Diesel Fuel Spray in Unsteady and Evaporative Field

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2253-2262
    • /
    • 2005
  • The focus of this work is placed on the analysis of the mixture formation mechanism under the evaporative diesel spray of impinging and free conditions. As an experimental parameter, ambient gas density was selected. Effects of density variation of ambient gas on liquid and vapor-phase inside structure of evaporation diesel spray were investigated. Ambient gas density was changed between ${\rho}a=5.0\;kg/m^3$ and $12.3\;kg/m^3$. In the case of impinging spray, the spray spreading to the radial direction is larger due to the decrease of drag force of ambient gas in the case of the low density than that of the high density. On the other hand, in the case of free spray, in accordance with the increase in the ambient gas density, the liquid-phase length is getting short due to the increase in drag force of ambient gas. In order to examine the homogeneity of mixture consisted of vapor-phase fuel and ambient gas in the spray, image analysis was conducted with statistical thermodynamics based on the non-dimensional entropy (S) method. In the case of application of entropy analysis to diesel spray, the entropy value always increases. The entropy of higher ambient density is higher than that of lower ambient gas density during initial injection period.

Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray (주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향)

  • Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

Ultraviolet and green emission property of ZnO thin film grown at various ambient pressure (분위기 산소압 변화에 따른 ZnO 박막의 발광특성 변화)

  • 강정석;심은섭;강홍성;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.355-357
    • /
    • 2001
  • ZnO thin films were deposited on (001) sapphire substrate at various ambient gas pressure by pulsed laser deposition(PLD). Oxygen was used as ambient gas, and oxygen gas pressure was varied from 1.0${\times}$10$\^$-6/ Torr to 500 mTorr during the film deposition. As oxygen gas pressure increase in the region below critical pressure photoluminescence(PL) intensity in UV and green region increase. As oxygen gas pressure increase in the region above critical pressure photoluminescence(PL) intensity in UV and green region decrease. Each of critical ambient gas Pressures was 350 mTorr for UV emission and 200 mTorr for green emission.

  • PDF

Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System (커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입)

  • Kong, Jang-Sik;Choi, Wook;Bae, Choong-Sik;Kang, Jin-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.

Study on RDE (Real Driving Emission) Characteristic of Gasoline Vehicle Depending on the Ambient Temperature (대기 온도에 따른 가솔린 차량의 실도로 배출가스 특성 연구)

  • Kim, Hyun-Jin;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • Despite the increasingly stringent automotive emissions regulations, the impact of vehicle emissions on air pollution remains large. In addition, since the issue of emission of more exhaust gas than the exhaust gas measured in the test room when the vehicle passing the exhaust gas regulation standard is run on the actual road, many countries studied and introduced gas regulations about Real Driving Emission using Portable Emission Measurement System. At present, Korea regulations restrict the number of NOx and PN in diesel vehicles. In the case of gasoline vehicles, there is no regulation on emission gas, but there is a problem of continuing automobile exhaust gas problems and a large amount of gasoline GDI vehicle's PN emission. So research and interest are increasing due to this problem. In this study, characteristics of exhaust gas depending on changes of ambient temperature were analyzed among various factors affecting exhaust gas measurement of gasoline vehicles. As a result, at the low temperature test, the lower the ambient temperature, the more the exhaust gas was emitted. At ordinary temperature test, no specific tendency was observed due to changes of ambient temperature.

Effect of Working Gas Pressure on Misfirng of ac PDP at High Ambient Temperature

  • Ryu, Jae-Hwa;Choi, Joon-Young;Kim, Dong-Hyun;Kim, Joong-Kyun;Kim, Young-Kee;Lee, Ho-Jun;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • One of the important problems in ac PDP in recent years is the misfiring of ac PDP at high ambient temperatures which consequently degrades the image quality of the ac PDP. This may be due to the change of working gas pressure and/or MgO surface characteristics at high ambient temperatures. This paper deals with the effect of working gas pressure on the misfiring of ac PDP at high ambient temperature. From this study, we found that the main cause of the misfiring at high ambient temperature is the increase in discharge firing voltage induced by increased working gas pressure

Effect of Ambient Gas on the Early Stage of the OLED Degradation

  • Kwak, Jeong-Hun;Cho, Hyun-Duck;Hong, Yong-Taek;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1467-1469
    • /
    • 2007
  • We report on the effect of ambient gas on the OLED degradation. The operating voltage and quantum efficiency increases when the device is exposed to the atmospheric gas and then returns to the initial level of the device in vacuum when the atmospheric gas is evacuated. These changes in the OLED performance can be attributed to the ambient gas pressure.

  • PDF

Microgravity Combustion Characteristics of Polystyrene Spheres with Various Ambient Gases (분위기 가스 변화에 의한 폴리스틸렌 구의 미소중력 연소특성)

  • Choe, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1509-1517
    • /
    • 2001
  • An experimental and numerical analysis were conducted to investigate the transient temperature distribution and flame propagation characteristics over an inline polystyrene spheres under microgravity. From the experimental, a self-ignition temperature of polystyrene bead was 872 K under gravity. Flame spread rates were 4.7-5.1 mm/s with ambient gas N$_2$and 2.3-2.5 mm/s with ambient gas CO$_2$, respectively. Flame radius diameters were 17 mm with ambient gas N$_2$and 9.6 mm with ambient gas CO$_2$, respectively. These results suggest that the flame propagation speed could be affected in the Diesel engine and the boiler combustor by EGR. In terms of the flame spread rate and the transient temperature profile, numerical results have the qualitative agreement with the experiment.

Breakup Characteristics of Impinging and Swirl Type Injectors

  • Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.32-46
    • /
    • 2005
  • The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

  • PDF

Effect of Ambient Conditions on Spray Behavior of Gasoline Injector (가솔린 분무 거동에 미치는 분위기 조건의 영향)

  • 이창식;이기형;최수천;권상일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2000
  • The main objective of this work is to investigate the effect of ambient conditions on the spray behavior and spray characteristics of high-pressure fuel injector. For this purpose, the effects of ambient pressure and temperature on the spray characteristics have been studied by applying the analysis of visualization system and phase Doppler particle analyzer. In this experiment, the visualization of spray behavior was performed under various ambient gas conditions and injection parameters such as gas temperature, ambient pressure, injection pressure of injector, and axial distance from the nozzle tip. Based on the investigation results, the spray tip penetration and spray width decrease with the increase of ambient gas pressure in the spray chamber. The effects of the spray parameters on the microscopic characteristics of gasoline spray were discussed.

  • PDF