• Title/Summary/Keyword: Ambient dose equivalent

Search Result 19, Processing Time 0.018 seconds

Validation of a Model for Estimating Individual External Dose Based on Ambient Dose Equivalent and Life Patterns

  • Sato, Rina;Yoshimura, Kazuya;Sanada, Yukihisa;Sato, Tetsuro
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.77-85
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model's accuracy and uncertainties in parameters used to estimate external doses have not been evaluated. Materials and Methods: The model estimates effective doses based on the integrated ambient dose equivalent (H*(10)) and life patterns, considering a dose reduction factor to estimate the indoor H*(10) and a conversion factor from H*(10) to the effective dose. Because personal dose equivalent (Hp(10)) has been reported to agree well with the effective dose after the FDNPS accident, this study validates the model's accuracy by comparing the estimated effective doses with Hp(10). The Hp(10) and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. Results and Discussion: The estimated effective doses correlated significantly with Hp(10); however, the estimated effective doses were lower than Hp(10) for indoor sites. A comparison with the measured indoor H*(10) showed that the estimated indoor H*(10) was not underestimated. However, the Hp(10) to H*(10) ratio indoors, which corresponds to the practical conversion factor from H*(10) to the effective dose, was significantly larger than the same ratio outdoors, meaning that the conversion factor of 0.6 is not appropriate for indoors due to the changes in irradiation geometry and gamma spectra. This could have led to a lower effective dose than Hp(10). Conclusion: The estimated effective doses correlated significantly with Hp(10), demonstrating the model's applicability for effective dose estimation. However, the lower value of the effective dose indoors could be because the conversion factor did not reflect the actual environment.

Dosimetric Quantities for 300 keV Neutrons (300 keV 중성자(中性子)에 대한 방사선량(放射線量) 관계량(關係量)의 산정(算定))

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.37-43
    • /
    • 1986
  • Dosimetric quantities for 300 keV neutrons in the ICRU standard tissue sphere were evaluated. The Monte Carlo code NEDEP which performs neutron-photon-charged particles coupled transport was used in the direct estimation of absorbed dose and dose equivalent. Some important quantities calculated are as follows; Deep dose equivalent index $H_{I,d}:1.78{\times}10^{11}\;Sv-cm^2$ Shallow dose equivalent index $H_{I,s}:2.08{\times}10^{-11}\;Sv-cm^2$ Ambient dose equivalent $H^*(0.07):1.7{\times}10^{-11}\;Sv-cm^2$ Ambient dose equivalent $H^*(10):1.78{\times}10^{-11}\;Sv-cm^2$ Effective quality factor $\bar{Q}^*(10):12.4$

  • PDF

Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter

  • Park, Kyeongjin;Kim, Jinhwan;Lim, Kyung Taek;Kim, Junhyeok;Chang, Hojong;Kim, Hyunduk;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1991-1997
    • /
    • 2019
  • In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H* (10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3 × 3 ㎟ PIN diode coupled to a 3 × 3 × 3 ㎣ CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H* (10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H* (10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H* (10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H* (10) based on the G(E) function for the gamma spectra was then compared with H* (10) calculated by simulation. The relative difference of H* (10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H* (10) for a multiple isotope case was in the range of ±5.56%.

Reduction of Outdoor and Indoor Ambient Dose Equivalent after Decontamination in the Fukushima Evacuation Zones

  • Yoshida-Ohuchi, Hiroko;Kanagami, Takashi;Naitoh, Yutaka;Kameyama, Mizuki;Hosoda, Masahiro
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.42-47
    • /
    • 2017
  • Background: One of the most urgent issues following the accident at the Fukushima Daiichi nuclear power plant (FDNPP) was the remediation of the land, in particular, for residential area contaminated by the radioactive materials discharged. In this study, the effect of decontamination on reduction of ambient dose equivalent outdoors and indoors was evaluated. The latter is essential for residents as most individuals spend a large portion of their time indoors. Materials and Methods: From December 2012 to November 2014, thirty-seven Japanese single-family detached wooden houses were investigated before and after decontamination in evacuation zones. Outdoor and indoor dose measurements (n = 84 and 114, respectively) were collected based on in situ measurements using the NaI (Tl) scintillation surveymeter. Results and Discussion: The outdoor ambient dose equivalents [$H^*(10)_{out}$] ranged from 0.61 to $3.71{\mu}Sv\;h^{-1}$ and from 0.23 to $1.32{\mu}Sv\;h^{-1}$ before and after decontamination, respectively. The indoor ambient dose equivalents [$H^*(10)_{in}$] ranged from 0.29 to $2.53{\mu}Sv\;h^{-1}$ and from 0.16 to $1.22{\mu}Sv\;h^{-1}$ before and after decontamination, respectively. The values of reduction efficiency (RE), defined as the ratio by which the radiation dose has been reduced via decontamination, were evaluated as $0.47{\pm}0.13$, $0.51{\pm}0.13$, and $0.58{\pm}0.08$ ($average{\pm}{\sigma}$) when $H^*(10)_{out}$ < $1.0{\mu}Sv\;h^{-1}$, $1.0{\mu}Sv\;h^{-1}$ < $H^*(10)_{out}$ < $2.0{\mu}Sv\;h^{-1}$, and $2.0{\mu}Sv\;h^{-1}$ < $H^*(10)_{out}$, respectively, indicating the values of RE increased as $H^*(10)_{out}$ increased. It was found that the values of RE were $0.53{\pm}0.12$ outdoors and $0.41{\pm}0.09$ indoors, respectively, indicating RE was larger outdoors than indoors. Conclusion: Indoor dose is essential as most individuals spend a large portion of their time indoors. The difference between outdoors and indoors should be considered carefully in order to estimate residents' exposure dose before their returning home.

Neutron Calibration Field of a Bare 252Cf Source in Vietnam

  • Le, Thiem Ngoc;Tran, Hoai-Nam;Nguyen, Khai Tuan;Trinh, Giap Van
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.277-284
    • /
    • 2017
  • This paper presents the establishment and characterization of a neutron calibration field using a bare $^{252}Cf$ source of low neutron source strength in Vietnam. The characterization of the field in terms of neutron flux spectra and neutron ambient dose equivalent rates were performed by Monte Carlo simulations using the MCNP5 code. The anisotropy effect of the source was also investigated. The neutron ambient dose equivalent rates at three reference distances of 75, 125, and 150 cm from the source were calculated and compared with the measurements using the Aloka TPS-451C neutron survey meters. The discrepancy between the calculated and measured values is found to be about 10%. To separate the scattered and the direct components from the total neutron flux spectra, an in-house shadow cone of 10% borated polyethylene was used. The shielding efficiency of the shadow cone was estimated using the MCNP5 code. The results confirmed that the shielding efficiency of the shadow cone is acceptable.

PRIMORDIAL RADIONUCLIDES DISTRIBUTION AND DOSE EVALUATION IN UDAGAMANDALAM REGION OF NILGIRIS IN INDIA

  • Manikandan, N.Muguntha;Selvasekarapandian, S.;Sivakumar, R.;Meenakshisundaram, V.;Raghunath, V.M.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.183-190
    • /
    • 2001
  • The activity concentration of primordial radionuclides i.e., $^{238}U$ series, $^{232}Th$ series and $^{40}K$, in soil samples collected from Udagamandalam environment, have been measured by employing NaI (Tl) Gamma ray Spectrometer. The absorbed gamma dose rate has also been simultaneously measured by using both Environmental Radiation Dosimeter at each soil sampling location (ambient gamma dose) as well as from the gamma dose derived from the activity concentration of the primordial radionuclides. The results of activity concentration of each radio nuclides in soil, absorbed dose rate in air due to soil activity and possible cosmic radiation at each location along with human effective dose equivalent for Udagamandalam environment are presented and discussed.

  • PDF

Neutron Dose Measurements Using TLDs in a 252Cf Neutron Field (252Cf 중성자장에서 열형광선량계(TLD)를 이용한 중성자 방사선량 측정)

  • Chang, Insu;Kim, Sang In;Lee, Jung Il;Kim, Jang Lyurl;Kim, Bong Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • In case of neutron dose measurement using TLDs (thermo-luminescence dosimeters), because the neutron energy dependence of the TLD is very high, the calibration of the energy response according to the characteristics of the neutron spectrum of workplace is required. In the present study, the ambient dose equivalent rates inside and around the Long-Counter (neutron detector) with narrow and complex inside in the neutron field of $^{252}Cf$ were evaluated. The calibration factors to account for the neutron energy dependence of TLDs were established for both the bare and $D_2O$ modulated $^{252}Cf$ neutron beams, respectively. The values of the TLD's measurement were compared with the computational results of the MCNPX (Monte Carlo N-Particles transport code). When using the two calibration factors of the TLD than a single calibration factor, the measured and the calculated values at the point of verification outside and inside the Long-Counter were in more good agreement. This results show that TLD should be calibrated in the reference neutron field similar to workplace situation.

Development of the Graphite-Moderated Neutron Calibration Fields Using 241Am-Be Sources in JAEA-FRS

  • Nishino, Sho;Tanimura, Yoshihiko;Ebata, Yoshiaki;Yoshizawa, Michio
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.211-215
    • /
    • 2016
  • Background: The moderated neutron calibration fields using $^{241}Am$-Be sources and a graphite moderator have been constructed at the Facility of Radiation Standard (FRS) in the Japan Atomic Energy Agency (JAEA). Materials and Methods: The neutron spectra of the fields were evaluated by the Monte-Carlo calculations and measurements using the Bonner Multi-sphere Spectrometer. Results and Discussion: The fields have continuous neutron spectra from several MeV to thermal neutron energy, with fluence-averaged energies of 0.84 MeV and 0.60 MeV. Reference values of fluence rates and ambient/personal dose equivalent rates were determined from neutron spectra by measurements. Conclusion: Currently, the fields are available for calibration or performance test of neutron measuring instruments.

Quantitative Assessment of the Radiation Exposure during Pathologic Process in the Sentinel Iymph Node Biopsy using Radioactive Colloid (방사성 콜로이드를 이용한 감시림프절 생검 병리처리과정에서 방사선 피폭의 정량적 평가)

  • Song, Yoo-Sung;Lee, Jeong-Won;Lee, Ho-Young;Kim, Seok-Ki;Kang, Keon-Wook;Kook, Myeong-Cherl;Park, Weon-Seo;Lee, Geon-Kook;Hong, Eun-Kyung;Lee, Eun-Sook
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.309-316
    • /
    • 2007
  • Purpose: Sentinel lymph node biopsy became the standard procedure in early breast cancer surgery. Faculty members might be exposed to a trace amount of radiation. The aim of this study is to quantify the radiation exposure and verify the safety of the procedure and the facilities, especially during pathologic process. Materials and Methods: Sentinel lymph node biopsies with Tc-99m human serum albumin were performed as routine clinical work. Exposed radiation doses were measured in pathologic technologist, nuclear medicine technologist, and nuclear medicine physician using a thermoluminescence dosimeter (TLD) during one month. We also measured the residual radioactivities or absorbed dose rates, the exposure distance and time during procedure, the radiation dose of the waste and the ambient equivalent dose of the pathology laboratory. Results: Actual exposed doses were 0.21 and 0.85 (uSv/study) for the whole body and hand of pathology technologist after 47 sentinel node pathologic preparations were performed. Whole body exposed doses of nuclear medicine physician and technologist were 0.2 and 2.3 (uSv/study). According to this data and the exposure threshold of the general population (1 mSv), at least 1100 studies were allowed in pathology technologist. The calculated exposed dose rates (${\mu}$ Sv/study) from residual radioactivities data were 2.47/ 22.4 ${\mu}$ Sv (whole body/hand) for the surgeon; 0.22/ 0 ${\mu}$ Sv for operation nurse. The ambient equivalent dose of the pathology laboratory was 0.02-0.03 mR/hr. The radiation dose of the waste was less than 100 Bq/g and nearly was not detected. Conclusion: Pathologic procedure relating sentinel lymph node biopsy using radioactive colloid is safe in terms of the radiation safety.(Nucl Med Mol Imaging 2007;41(4);309-316)