• 제목/요약/키워드: Ambient Vibration

검색결과 328건 처리시간 0.026초

Site effect microzonation of Babol, Iran

  • Tavakoli, H.R.;Amiri, M. Talebzade;Abdollahzade, G.;Janalizade, A.
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.821-845
    • /
    • 2016
  • Extensive researches on distribution of earthquake induced damages in different regions have shown that geological and geotechnical conditions of the local soils significantly influence behavior of alluvial areas under seismic loading. In this article, the site of Babol city which is formed up of saturated fine alluvial soils is considered as a case study. In order to reduce the uncertainties associated with earthquake resistant design of structures in this area (Babol city), the required design parameters have been evaluated with consideration of site's dynamic effects. The utilized methodology combines experimental ground ambient noise analysis, expressed in terms of horizontal to vertical (H/V) spectral ratio, with numerical one-dimensional response analysis of soil columns using DEEPSOIL software. The H/V spectral analysis was performed at 60 points, experimentally, for the region in order to estimate both the fundamental period and its corresponding amplification for the ground vibration. The investigation resulted in amplification ratios that were greater than one in all areas. A good agreement between the proposed ranges of natural periods and alluvial amplification ratios obtained through the analytical model and the experimental microtremor studies verifies the analytical model to provide a good engineering reflection of the subterraneous alluviums.

Synthesis and Characterization of the Layered Type $(C_nH_{2n+1}NH_3)_2PbCl_4$ System

  • 이수종;김계야;오은주;김규홍;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권3호
    • /
    • pp.317-320
    • /
    • 2000
  • Layered $K_2NiF_4$type ($C_nH_{2n+1}NH_3)_2PbCl_4$(n=6, 8 and 10) system, or alkylammonium tetrachloroplumbate compound, has been synthesized from $PbCl_2$ and $C_nH_{2n+1}NH_3Cl$ solutions under argon ambient pressure for 12hrs at $90^{\circ}C$. The crystal structure of the compound has been analyzed using X-ray powder diffaction in the range of $5^{\circ}{\leq}2{\theta}{\leq}55^{\circ}$, and all samples assigned to an orthorhombic system. Local distances of the Pb-Cl bond have been determined by Pb $L_{III}$-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The vibration modes of alkylammonium chains and the absorpton peaks of an excition have been examined by FT-IR and UV-Vis. reflectance spectra, respectively. The phase transition temperatures of the compounds have been studied by using DSC. According to the thermal analysis, two phase transition temperatures have been observed in the compositons of n=8 and 10.

Multi-variate Empirical Mode Decomposition (MEMD) for ambient modal identification of RC road bridge

  • Mahato, Swarup;Hazra, Budhaditya;Chakraborty, Arunasis
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.283-294
    • /
    • 2020
  • In this paper, an adaptive MEMD based modal identification technique for linear time-invariant systems is proposed employing multiple vibration measurements. Traditional empirical mode decomposition (EMD) suffers from mode-mixing during sifting operations to identify intrinsic mode functions (IMF). MEMD performs better in this context as it considers multi-channel data and projects them into a n-dimensional hypercube to evaluate the IMFs. Using this technique, modal parameters of the structural system are identified. It is observed that MEMD has superior performance compared to its traditional counterpart. However, it still suffers from mild mode-mixing in higher modes where the energy contents are low. To avoid this problem, an adaptive filtering scheme is proposed to decompose the interfering modes. The Proposed modified scheme is then applied to vibrations of a reinforced concrete road bridge. Results presented in this study show that the proposed MEMD based approach coupled with the filtering technique can effectively identify the parameters of the dominant modes present in the structural response with a significant level of accuracy.

The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection

  • Jiaqin Xu;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.81-93
    • /
    • 2023
  • Due to the unclear mechanism of the influence of temperature on the resonance problem of doubly curved shells, this article aims to explore this issue. When the ambient temperature rises, the composite structure will expand. If the thermal effects are considered, the resonance response will become more complex. In the design of structure, thermal effect is inevitable. Therefore, it is of significance to study the resonant behavior of doubly curved shell structures in thermal environment. In view of this, this paper extends the previous work (She and Ding 2023) to the case of the nonlinear principal resonance behavior of graphene platelet reinforced metal foams (GPLRMFs) doubly curved shells in thermal environment. The effect of uniform temperature field is taken into consideration in the constitutive equation, and the nonlinear motion control equation considering temperature effect is derived. The modified Lindstedt Poincare (MLP) method is used to obtain the resonance response of doubly curved shells. Finally, we study the effects of temperature changes, shell types, material parameters, initial geometric imperfection and prestress on the forced vibration behaviors. It can be found that, as the temperature goes up, the resonance position can be advanced.

고층건물의 자연 진동실험 및 시스템판별 (Ambient Vibration Testing and System Identification for Tall Buildings)

  • 조순호
    • 한국지진공학회논문집
    • /
    • 제16권3호
    • /
    • pp.23-33
    • /
    • 2012
  • 구조물의 특성치를 결정하기 위하여 18층 규모의 사무용 건물 3동에 대하여 자연진동 조건하에서 동적계측실험을 수행하였다. 대상건물은 기본적으로 보-기둥 골조시스템에 횡하중을 보다 효율적으로 지지하기 위하여 추가적으로 코아가 배치된 혼합 구조형식을 나타낸다. 매층 마다 측정한 일련의 진동기록으로부터 고유진동수, 모드형태 및 감쇠율 등과 같은 모달계수를 추출하기 위하여 최신 주파수- 및 시간영역-기반 응답의존 시스템판별법인 FDD, pLSCF 및 SSI를 적용하였다. 3방법에 의하여 추출한 결과는 대체로 일치하였으나, 초기 FE 해석결과와 비교하여 저차 3개 고유진동수는 대략 1.2~1.7배나 되는 단단한 거동을 나타냈다. 진동응답으로부터 추출된 값, 기준에서 제시하는 약산식 및 FE해석에 의하여 산정된 고유주기를 비교하여 보면, FE결과가 가장 유연한 거동을 예측하였으며, 높이를 변수로 하는 약산식이 추출된 값에 가장 근접한 결과를 나타냈다. 이러한 차이는 현재의 실험 추출치에는 콘크리트 균열 등과 같은 강성저감 요인을 포함하고 있지 않으며, 또한 FE 해석치는 비구조체 및 사용된 재료의 실제성능 등과 관련된 강성증가 요소를 포함하고 있지 않기 때문이다.

The use of SMA wire dampers to enhance the seismic performance of two historical Islamic minarets

  • El-Attar, Adel;Saleh, Ahmed;El-Habbal, Islam;Zaghw, Abdel Hamid;Osman, Ashraf
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.221-232
    • /
    • 2008
  • This paper represents the final results of a research program sponsored by the European Commission through project WIND-CHIME ($\underline{W}$ide Range Non-$\underline{IN}$trusive $\underline{D}$evices toward $\underline{C}$onservation of $\underline{HI}$storical Monuments in the $\underline{ME}$diterranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, the dynamic characteristics of two outstanding Mamluk-Style minarets, which similar minarets were reported to experience extensive damage during Dahshur 1992 earthquake, are investigated. The first minaret is the Qusun minaret (1337 A.D, 736 Hijri Date (H.D)) located in El-Suyuti cemetery on the southern side of the Salah El-Din citadel. The minaret is currently separated from the surrounding building and is directly resting on the ground (no vaults underneath). The total height of the minaret is 40.28 meters with a base rectangular shaft of about 5.42 ${\times}$ 5.20 m. The second minaret is the southern minaret of Al-Sultaniya (1340 A.D, 739 H.D). It is located about 30.0 meters from Qusun minaret, and it is now standing alone but it seems that it used to be attached to a huge unidentified structure. The style of the minaret and its size attribute it to the first half of the fourteenth century. The minaret total height is 36.69 meters and has a 4.48 ${\times}$ 4.48 m rectangular base. Field investigations were conducted to obtain: (a) geometrical description of the minarets, (b) material properties of the minarets' stones, and (c) soil conditions at the minarets' location. Ambient vibration tests were performed to determine the modal parameters of the minarets such as natural frequencies and mode shapes. A $1/16^{th}$ scale model of Qusun minaret was constructed at Cairo University Concrete Research Laboratory and tested under free vibration with and without SMA wire dampers. The contribution of SMA wire dampers to the structural damping coefficient was evaluated under different vertical loads and vibration amplitudes. Experimental results were used along with the field investigation data to develop a realistic 3-D finite element model that can be used for seismic risk evaluation of the minarets. Examining the updated finite element models under different seismic excitations indicated the vulnerability of such structures to earthquakes with medium to high a/v ratio. The use of SMA wire dampers was found feasible for reducing the seismic risk for this type of structures.

상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발 (Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring)

  • 박준영;신준식;원종빈;박종웅;박민용
    • 한국전산구조공학회논문집
    • /
    • 제34권5호
    • /
    • pp.301-308
    • /
    • 2021
  • 사회기반 시설물의 노후화에 대응해 이상 징후를 파악하고 유지보수를 위한 최적의 의사결정을 내리기 위해선 디지털 기반 SOC 시설물 유지관리 시스템의 개발이 필수적인데, 디지털 SOC 시스템은 장기간 구조물 계측을 위한 IoT 센서 시스템과 축적 데이터 처리를 위한 클라우드 컴퓨팅 기술을 요구한다. 본 연구에서는 구조물의 다물리량을 장기간 측정할 수 있는 IoT센서와 클라우드 컴퓨팅을 위한 서버 시스템을 개발하였다. 개발 IoT센서는 총 3축 가속도 및 3채널의 변형률 측정이 가능하고 24비트의 높은 해상도로 정밀한 데이터 수집을 수행한다. 또한 저전력 LTE-CAT M1 통신을 통해 데이터를 실시간으로 서버에 전송하여 별도의 중계기가 필요 없는 장점이 있다. 개발된 클라우드 서버는 센서로부터 다물리량 데이터를 수신하고 가속도, 변형률 기반 변위 융합 알고리즘을 내장하여 센서에서의 연산 없이 고성능 연산을 수행한다. 제안 방법의 검증은 2개소의 실제 교량에서 변위계와의 계측 결과 비교, 장기간 운영 테스트를 통해 이뤄졌다.

밴드 별 잡음 특징을 이용한 골전도 음성신호의 잡음 제거 알고리즘 (Noise Cancellation Algorithm of Bone Conduction Speech Signal using Feature of Noise in Separated Band)

  • 이지나;이기현;나승대;성기웅;조진호;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.128-137
    • /
    • 2016
  • In mobile communication, air conduction(AC) speech signal had been commonly used, but it was easily affected by ambient noise environment such as emergency, military action and rescue. To overcome the weakness of the AC speech signal, bone conduction(BC) speech signal have been used. The BC speech signal is transmitted through bone vibration, so it is affected less by the background noise. In this paper, we proposed noise cancellation algorithm of the BC speech signal using noise feature of decomposed bands. The proposed algorithm consist of three steps. First, the BC speech signal is divided into 17 bands using perceptual wavelet packet decomposition. Second, threshold is calculated by noise feature during short time of separated-band and compared to absolute average of the signal frame. Therefore, the speech and noise parts are detected. Last, the detected noise parts are removed and then, noise eliminated bands are re-synthesised. In order to confirm the efficiency of the proposed algorithm, we compared the proposed algorithm with conventional algorithm. And the proposed algorithm has better performance than the conventional algorithm.

SWMAS의 성능 검증을 위한 구조물의 동특성 분석 (Identifying Dynamic Characteristics of Structures to Estimate the Performance of a Smart Wireless MA System)

  • 허광희;이우상;신재철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.227-234
    • /
    • 2005
  • 본 논문에서는 토목구조물의 스마트 모니터링 시스템을 위한 MEMS 형식의 가속도 센서를 부착한 스마트 무선 센서 장치를 설계하고 제작하였다. 그리고 다양한 성능 실험을 통하여 장치의 성능을 평가하였다. 첫째 장치에 부착한 가속도 센서의 민감도와 분해능, 잡음을 평가하기 위한 실험을 실시하였다. 실험의 결과는 센서의 데이터 쉬트의 값과 비교하여 센서의 성능을 평가 하였다. 두 번째로는 무선 센서 장치를 이용하여 상시 가진을 받는 모형구조물의 동특성을 NExT와 ERA 알고리즘을 사용하여 분석하였다. 이와 같이 분석된 동적 특성은 유한요소 해석 결과와 상호 비교하여 그 유용성을 입증하였고, 스마트 모니터링 시스템에 무선 센서 장치가 효과적으로 적용될 수 있는 가능성을 제시하였다.

대형 레이더 기계구조부 개발 절차 (Development Process of Mechanical Structure for a Large Radar)

  • 신동준;이종학;강영식
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.