• Title/Summary/Keyword: Ambient Particulate Matter

Search Result 133, Processing Time 0.025 seconds

Comparative Evaluation of Gravimetric Measurement Methods for Suspended Particles in Indoor and Outdoor Air (실내.외 공기 중 부유먼지 측정방법 상호간의 비교평가 - 중량법을 대상으로)

  • 백성옥;박지혜;서영교
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.285-295
    • /
    • 2002
  • In this study, several types of gravimetric methods (such as high, medium, low, and ultra low volume sampling methods) were applied to determine suspended particulate matter concentrations in both ambient and indoor environments. Comparative evaluations were undertaken with SPM data obtained using a variety of samplers (TSP, PM10, and PM4.0) at different sampling flow rates. Correlation coefficients between TSP and PM10 concentrations measured at different flow rates fell in the range of 0.73∼0.94 (n=40). In addition, correlation coefficients for PM concentrations measured by different TSP samplers were in the range of 0.90∼0.95 (n=36 or n=38), while 0.77∼0.91 (n=38) for PM10 samplers. Correlation analysis was also conducted on indoor monitoring data that were measured using ultra-low-volume samplers at both different or identical flow rates. The correlation coefficients were in the range of 0.98∼0.99 (n=38) between TSP and TSP and 0.92∼0.94 (n=38) between TSP and PM10. The mean ratio for high volume PM10 to TSP concentration that was monitored at identical flow rates in the ambient air appeared to be 0.72. The mean ratios of PM10 to TSP and PM4.0 to TSP observed with identical flow rates at indoor environments were 0.47 and 0.40. The results of this study may provide empirical information concerning the compatability of aerosol data obtained by gravimetric sampling methods at different flow rates.

Age Dependencies in Air Pollution-associated Asthma Hospitalization (PM10과 오존이 연령군별 천식 입원에 미치는 영향)

  • Bae, Hyun-Joo;Ha, Jong-Sik;Lee, Ae-Kyung;Park, Jeong-Im
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.124-130
    • /
    • 2008
  • This study investigated the age dependencies in ambient air pollution-associated asthma hospitalization from 2003 to 2005 in Seoul. For all ages and the age groups of 0-14, 15-64, and 65+years, the Generalized Additive Model (GAM) was used to estimate the relative risks of daily asthma hospitalization associated with changes in particulate matter and ozone. The time-trends, seasonal variances, day effects, temperature, humidity, and pressure at sea level were controlled in the models. Significant associations were observed between asthma hospitalization and the levels of $PM_{10}$ and $O_3$. The relative risks (RRs) of asthma hospitalization for every 10 unit increases in $PM_{10}({\mu}g/m^3)$ and $O_3$(ppb) were 1.008 (95% CI 1.005-1.012), and 1.012 (95% CI 1.003-1.020), respectively. Evaluated over $10\;{\mu}g/m^3$ increase in $PM_{10}$, we found the relative risks of asthma hospitalization to be 1.009 (95% CI 1.004-1.014) in 0-14 age group, and 1.015 (95% CI 1.008-1.022) in 65+ age group. Considering 10 ppb increase in $O_3$, those were 1.014 (95% CI 1.003-1.024) in 0-14 age group, and 1.025 (95% CI 1.009-1.041) in 65+ age group. It was concluded that current levels of ambient air pollution in Seoul make a significant contribution to the variation in daily asthma hospitalization. Further reduction in air pollution is necessary to protect the health of the community, especially that of the higher risky groups including children and elderly population.

Effects of Personal Exposure to Nitrogen Dioxide on Peak Expiratory Flow in Asthmatic Patients (이산화질소 개인 노출량이 기관지천식 환자의 최대호기유속에 미치는 영향)

  • Kwon, Ho-Jang;Lee, Sang-Gyu;Jee, Young-Koo;Lee, Sang-Rok;Hwang, Seung-Sik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.1
    • /
    • pp.59-63
    • /
    • 2007
  • Objectives : Nitrogen dioxide $(NO_2)$ has been inconsistently associated with gradual decreases in lung function. Here, we studied the effects of $NO_2$ exposure in asthmatics by examining the association between changes in lung function and concentrations of $NO_2$ which were personally measured. Methods : Peak expiratory flow (PEF) and daily personal exposures to $NO_2$ were recorded on 28 patients with asthma (confirmed by methacholine provocation test) over 4 weeks. We used generalized estimating equations to assess the relationship between personal $NO_2$ exposure and PEF, adjusting for potential confounders such as age, gender, outdoor particulate matter, temperature, humidity, and exposure to environmental tobacco smoke. Results : The personal $NO_2$ exposures were higher than the corresponding ambient levels. The mean personal: ambient ratio for $NO_2$ was 1.48. The personal $NO_2$ exposures were not associated with the morning PEF, evening PEF, or the diurnal PEF variability. However, environmental tobacco smoke was negatively associated with both the morning and evening PEF. Conclusions : Among the asthmatic adults who participated in this study, we found no apparent impact of personal $NO_2$ exposures on the peak expiratory flow.

Exposure Assessment of Diesel Engine Exhaust among Door-to-door Deliverers in Daegu (대구지역 택배서비스업 종사자의 디젤엔진배출물 노출 평가)

  • Lee, Ga Hyun;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.361-370
    • /
    • 2017
  • Objectives: This study evaluated the diesel engine exhaust (DEE) exposure levels of door-to-door deliverers in Daegu from July to September. Methods: We measured exposure levels of DEE surrogates for the same door-to-door deliverers who joined the particulate matter 2.5 exposure study previously published in this journal. Black carbon(BC) concentrations were measured using real-time BC monitoring devices with 1 minute interval. $NO_2$ concentrations were monitored using passive badges. DEE exposure data were analyzed using the same characteristics and GPS information as the first study. Results: A total of 40 measurements of BC concentrations and $NO_2$ concentrations were collected during delivery of parcels. The average exposure levels to BC, and $NO_2$ were $2.23{\mu}g/m^3$ ($0.001-350.85{\mu}g/m^3$) and 21.26 ppb(3.3-61.37 ppb), respectively. Exposure levels to BC according to the day of a week and coverage areas were not significantly different(p>0.05). Delivery trucks manufactured before 2006 caused significantly higher exposure to BC than the trucks manufactured after 2006(p<0.05). Exposure levels of BC integrated for each time in residential area and roadsides were $1.96{\mu}g/m^3$ and $3.46{\mu}g/m^3$, respectively, and the difference was statistically significant(p<0.001). The Pearson correlation coefficients between the ambient $PM_{2.5}$ and BC was significant, r=0.26(p<0.01); however, the correlations between $PM_{2.5}$ and ambient $PM_{2.5}$, and between BC of DEE and $PM_{2.5}$ of DEE did not show a significant correlation Conclusions: BC and $NO_2$ exposure levels were significantly lower when door-to-door deliverers drove newer trucks. BC exposure levels of deliverers were higher in roadsides than in residential area. DEE from nearby vehicles through open windows might be the main source of BC exposure.

Concentrations of SPM and Ambient Hazardous Heavy Metals in an Industrial Complex Area in Daegu City (대구시 산단지역 대기 중 SPM과 유해중금속성분의 농도)

  • Song, Hee-Bong;Kwon, Jong-Dae;Park, Su-Kyoung;Kim, Eun-Kyung;Yoon, Hyun-Suk;Ju, Myeong-Hui;Bae, Gi-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.4
    • /
    • pp.259-267
    • /
    • 2015
  • Objectives: This study evaluated the regional and seasonal concentrations of ambient hazardous heavy metals in an industrial complex area in Daegu City. Methods: A total of 64 SPM (Suspended Particulate Matter) samples were collected in non-industrial and industrial areas during 2014 and were analyzed for hazardous heavy metals elements (As, Cd, Mn, Ni, Pb) with ICP after acid extraction. Results: SPM and hazardous heavy metals concentrations showed regional (industrial complex area>non-industrial complex area) and seasonal (spring, winter>fall, summer) variations. All of the hazardous heavy metals were influenced by anthropogenic sources. The pollution index of hazardous heavy metals was very low, showing roughly one-quarter of the level of the air quality guidelines of WHO. The correlation analysis among SPM and hazardous heavy metals indicated that components of non-industrial complex areas were more related to each other than those of industrial complex areas, and the correlation in the winter was higher than in other seasons. Conclusion: It is necessary to control air pollution sources and establish related policy because hazardous heavy metals from industrial areas can influence residential areas.

Short-term Effects of Ambient Air Pollution on Emergency Department Visits for Asthma: An Assessment of Effect Modification by Prior Allergic Disease History

  • Noh, Juhwan;Sohn, Jungwoo;Cho, Jaelim;Cho, Seong-Kyung;Choi, Yoon Jung;Kim, Changsoo;Shin, Dong Chun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.49 no.5
    • /
    • pp.329-341
    • /
    • 2016
  • Objectives: The goal of this study was to investigate the short-term effect of ambient air pollution on emergency department (ED) visits in Seoul for asthma according to patients' prior history of allergic diseases. Methods: Data on ED visits from 2005 to 2009 were obtained from the Health Insurance Review and Assessment Service. To evaluate the risk of ED visits for asthma related to ambient air pollutants (carbon monoxide [CO], nitrogen dioxide [$NO_2$], ozone [$O_3$], sulfur dioxide [$SO_2$], and particulate matter with an aerodynamic diameter <$10{\mu}m$ [$PM_{10}$]), a generalized additive model with a Poisson distribution was used; a single-lag model and a cumulative-effect model (average concentration over the previous 1-7 days) were also explored. The percent increase and 95% confidence interval (CI) were calculated for each interquartile range (IQR) increment in the concentration of each air pollutant. Subgroup analyses were done by age, gender, the presence of allergic disease, and season. Results: A total of 33 751 asthma attack cases were observed during the study period. The strongest association was a 9.6% increase (95% CI, 6.9% to 12.3%) in the risk of ED visits for asthma per IQR increase in $O_3$ concentration. IQR changes in $NO_2$ and $PM_{10}$ concentrations were also significantly associated with ED visits in the cumulative lag 7 model. Among patients with a prior history of allergic rhinitis or atopic dermatitis, the risk of ED visits for asthma per IQR increase in $PM_{10}$ concentration was higher (3.9%; 95% CI, 1.2% to 6.7%) than in patients with no such history. Conclusions: Ambient air pollutants were positively associated with ED visits for asthma, especially among subjects with a prior history of allergic rhinitis or atopic dermatitis.

Distribution Characteristics of Heavy Metals in the Ambient Air of Ulsan Area (울산 대기 중 중금속 분포특성)

  • Moon, Ji-Yong;Kim, Young-Bok;Lee, Ji-Young;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.442-450
    • /
    • 2001
  • In this study, we collected PM10(particulate matter less than $10{\mu}m$) by using a high volume air sampler from March 2000 to September 2000 to investigate the contamination level and the distribution characteristics of heavy metals in the ambient air in Ulsan area. Samples were pretreated by the microwave extraction methods, and heaby metals (Cr, Cu, Zn, Cd, Ni, As, and Pb) were quantified by using and ICP-MS system. The highest PM10 concentrations in the ambient air were $85.6{\mu}g/m^3$ and the aberage value was $37.1{\mu}g/m^3$. The maximum levels of each heavy metal were as follows: $2.5{\mu}g/m^3$ for Fe(Yeocheon-dong), $0.41{\mu}g/m^3$ for Zn(Nammok-2-dong), $0.061{\mu}g/m^3$ for Cd(Yeocheon-dong), $0.20{\mu}g/m^3$ for Pb(Yeocheon-dong), $0.037{\mu}g/m^3$ for Ni(Yeoncheon-dong), $0.88{\mu}g/m^3$ for Cu(Yaeum-dong), $0.042{\mu}g/m^3$ for Cr(Yaeum-dong), and $0.015{\mu}g/m^3$ for As(Onsan). Among concentration of heavy metals, Ni and Zn compounds were highly correlated with a correlation coefficient of 0.87 at Nammok-2-dong.

  • PDF

High Time-resolution Characterization of PM2.5 Sulfate Measured in a Japanese Urban Site

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.280-287
    • /
    • 2015
  • The high time-resolution monitoring data are essential to estimate rapid changes in chemical compositions, concentrations, formation mechanisms, and likely sources of atmospheric particulate matter (PM). In this study, $PM_{2.5}$ sulfate, $PM_{2.5}$, $PM_{10}$, and the number concentration of size-resolved PMs were monitored in Fukuoka, Japan by good time-resolved methods during the springtime. The highest monthly average $PM_{2.5}$ sulfate was found in May ($8.85{\mu}g\;m^{-3}$), followed by April ($8.36{\mu}g\;m^{-3}$), March ($8.13{\mu}g\;m^{-3}$), and June ($7.22{\mu}g\;m^{-3}$). The cases exceed the Japanese central government's safety standard for $PM_{2.5}$ ($35{\mu}g\;m^{-3}$) reached 10.11% during four months campaign. The fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ varied from 12.05% to 68.11% with average value of 35.49% throughout the entire period of monitoring. This high proportion of sulfate in $PM_{2.5}$ is an obvious characteristic of the ambient $PM_{2.5}$ in Fukuoka during the springtime. However, the average fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ in three rain events occurred during our intensive campaign fell right down to 15.53%. Unusually high $PM_{2.5}$ sulfate (> $30{\mu}g\;m^{-3}$) marked on three days were probably affected by the air parcels coming from the Chinese continent, the natural sulfur in the remote marine atmosphere, and a large number of ships sailing on the nearby sea. The theoretical number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ was originally calculated and then compared to $PM_{2.5}$ sulfate. A close resemblance between the diurnal variations of the theoretically calculated number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ and $PM_{2.5}$ sulfate concentration indicates that the secondary formed $(NH_4)_2SO_4$ was the primary form of sulfate in $PM_{2.5}$ during our monitoring period.

Comparison of Ambient Real-Time PM2.5 Concentrations at Major Roadside with on those at Adjacent Residential Sites in Seoul Metropolitan City (서울시 도로변지역과 인근 주거 밀집지역의 실시간 대기 중 PM2.5농도 비교)

  • Yun, Dongmin;Kim, Bokyeong;Lee, Dongjae;Lee, Seonyeob;Kim, Sungroul
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.875-882
    • /
    • 2015
  • In 2013, International Agency for Research on Cancer (IARC) concluded that outdoor air pollution is carcinogenic to humans, with the particulate matter component of air pollution most closely associated with sufficient evidence of increased cancer incidence by exposure to particulate matter component of air pollution. Motor vehicles are one of a major emission sources of fine particle ($PM_{2.5}$) in urban areas. A large number of epidemiological studies have reported a positive association of morbidity or mortality with distance from the roadside. We conducted this study to assess the association of $PM_{2.5}$ concentrations measured at roadside hotspots with those at adjacent residential sites using real-time $PM_{2.5}$ monitors. We conducted real-time $PM_{2.5}$ measurements for rush hour periods (08:00~10:00 and 18:00~20:00) at 9 roadside air monitoring Hotspot sites in metropolitan Seoul over 3 weeks from October 1 to 21, 2013. Simultaneous measurements were conducted in residential sites within a 100 m radius from each roadside air monitoring site. A SidePak AM510 was used for the real-time $PM_{2.5}$ measurements. Medians of roadside $PM_{2.5}$ concentrations ranged from $9.8{\mu}g/m^3$ to $38.3{\mu}g/m^3$, while corresponding median values at adjacent residential sites ranged from $4.4{\mu}g/m^3$ to $37.3{\mu}g/m^3$. $PM_{2.5}$ concentrations of residential sites were 0.97 times of hotspot roadside sites. Distributions of $PM_{2.5}$ concentrations in roadside and residential areas were also very similar. Real-time $PM_{2.5}$ concentrations at residential sites, (100 m adjacent), showed similar levels to those at roadside sites. Increasing the distance between roadside and residential sites, if needed, should be considered to protect urban resident populations from $PM_{2.5}$ emitted by traffic related sources.

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.