• Title/Summary/Keyword: Alzheimer′s disease (AD)

Search Result 458, Processing Time 0.029 seconds

The Effect of Vitis labruscana B. Leaves Ethanol Extract on the Expression of Amyloid Precursor Protein in Neuroblastoma Cells and on the Acetylcholinesterase Activity (캠벨얼리(Vitis labruscana B.) 잎 에탄올 추출물이 신경세포에서 아밀로이드 전구 단백질의 발현과 아세틸콜린에스테라제 활성에 미치는 영향)

  • Choi, Ha Yeon;Kim, Ju Eun;Ma, Sang Yong;Cho, Hyung Kwon;Kim, Dae Sung;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.102-110
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common form of dementia, and the accumulation of β-amyloid (Aβ) in the brain triggers AD, followed by hyperphosphorylation of tau protein, neurofibrillary tangles, and synapses loss, neuronal cell death, and cognitive decline occur in a chain. In APPswe neuronal cell line, 50 ㎍/ml of Campbell early (Vitis labruscana B.) leaves 50% ethanol extract (VLL) treatment inhibited the secretion of Aβ1-42 by about 63% and the secretion of Aβ1-40 by about 50%. VLL did not target the enzymatic activity of the amyloidogenic pathway and decreased the protein expression of APP. As a result of RT-qPCR (Reverse transcription-quantitative real-time PCR) of the APPswe cell line treated with VLL, it is thought that the protein expression of APP was reduced by inhibiting the transcription process of the APP gene. In addition, VLL inhibited acetylcholinesterase (AChE) enzyme activity in vitro by 27.6% and 54.7%, respectively, at 50 and 100 ㎍/ml concentrations. We found that VLL inhibited the production of Aβ, a dementia-inducing substance, by suppressing the transcription of the APP gene, and that VLL inhibited AChE activity. We suggest that VLL has the potential as a natural drug material that modulates the alleviation of dementia symptoms.

Neuroprotective and Memory Enhancing Effects of Pinelliae rhizoma Extract (반하가 CT105에 의한 신경세포 상해 및 백서의 기억에 미치는 영향)

  • Gang Sang-Yeol;Lee So-Yeon;Yoon Hyeon-Deok;Shin Oh-Chul;Park Chang-Gook;Park Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.27-42
    • /
    • 2005
  • Objectives : Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease characterized by amyloid plaques and neurofibrillary tangles. These plaques are associated with degenerating neuronal processes and consist primarily of fibrillary aggregates of beta-amyloid$ protein, generated from amyloid precursor protein (APP). Another amyloidogenic fragment, the carboxyl terminus (CT) of APP, which is composed of 99-105 amino acid residues containing the complete $A{\beta}$ sequence, also appears to be toxic to neurones. Recent evidence suggest that CT105, carboxy terminal 105 amino acids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. Methods : Although a variety of oriental prescriptions including Pinelliae rhizoma have traditionally been utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. In the present study, we investigated effects of the dichloromethane extract of Pinelliae rhizoma (PINR) on neurotoxicity and the formation of reactive oxygen species (ROS) and nitric oxide (NO) in SK-N-SH cells overexpressed with CT105. In addition, we evaluated its radical scavenging activity and effects on acetylcholinesterase (AChE) activity. Furthermore, effects on cognitive deficits induced by scopolamine treatment in rats were evaluated. Results ; We found in this study that PINR significantly inhibited apoptotic neuronal death induced by CT105 overexpression in SK-N-SH cells. Based on morphological examinations by phase-contrast microscopy, PINR reversed apoptotic changes of CT105-expressed cells. It was also found that PINR significantly promoted neurite outgrowth and inhibited formation of ROS nd NO. PINR was shown to scavenge DPPH radicals and noncompetitively inhibit AChE activity. Furthermore, it reduced scopolamine-induced memory impairment in rata, assessed by passive avoidance test. Conclusions : Taken together, these results demonstrate that PINR exhibits neuroprotective, antioxidant, and memory enhancing effects, and therefore may bs beneficial for the treatment of AD.

  • PDF

Standardization of Quality and Inhibitory Effect of Alzheimer in $A{\beta}$ Oligomer-induced H19-7 Cells by LMK02 (LMK02의 품질규격화와 $A{\beta}$ 올리고머에 의해 유도된 희주해마 H19-7세포주에 미치는 항치매효과)

  • Kang, Hyung-Won;Kim, Sang-Tae;Son, Hyeong-Jin;Han, Pyeong-Leem;Cho, Hyoung-Kwon;Lee, Young-Jae;Lyu, Yeoung-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.397-404
    • /
    • 2009
  • For standardization of LMK02 quality, Ginsenoside Rg3 of Red Ginseng and Decursin of Angelica gigas Nakai in the constituents of LMK02 were estimated as indicative components. From LMK02 water extract, has been used in vitro test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease (AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein (APP), including the amyloid-${\beta}$ peptide ($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. We determined that oligomer amyloid-${\beta}$ ($A{\beta}$) have a profound attenuation in the increase in rat hippocampus H19-7 cells from. Experimental evidence indicates that LMK02 protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a hippocampus cell line on $A{\beta}$ oligomer-induced neuronal cytotoxicity, we demonstrated that LMK02 inhibits formation of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. In the Red Ginseng, the average amounts of Ginsenoside Rg3 were $47.04{\mu}g/g$ and $42.3{\mu}g/g$, 90 % of its weight were set as a standard value. And, in the Angelica gigas Nakai, the average amounts of Decursin were 2.71 mg/g and 2.44mg/g, 90 % of its weight were also set as a standard value. The attenuated $A{\beta}$ oligomer in the presence of LMK02 was observed in the conditioned medium of this $A{\beta}$ oligomer-induced cells under in vitro. In the cells, LMK02 significantly activated antiapoptosis and decreased the production of ROS. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of LMK02 treatment.

Protective Effect of Citrate against $A{\beta}$-induced Neurotoxicity in PC12 Cells

  • Yang, Hyun-Duk;Son, Il-Hong;Lee, Sung-Soo;Park, Yong-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.157-163
    • /
    • 2008
  • Formation of ${\beta}$-amyloid $(A{\beta})$ fibrils has been identified as one of the major characteristics of Alzheimer's disease (AD). Inhibition of $A{\beta}$ fibril formation in the CNS would be attractive therapeutic targets for the treatment of AD. Several small compounds that inhibit amyloid formation or amyloid neurotoxicity in vitro have been known. Citrate has surfactant function effect because of its molecular structure having high anionic charge density, in addition to the well-known antibacterial and antioxidant properties. Therefore, we hypothesized that citrate might have the inhibitory effect against $A{\beta}$ fibril formation in vitro and have the protective effect against $A{\beta}$-induced neurotoxicity in PC12 cells. We examined the effect of citrate against the formation of $A{\beta}$ fibrils by measuring the intensity of fluorescence in thioflavin-T (Th-T) assay of between $A{\beta}_{25-35}$ groups treated with citrate and the control with $A{\beta}_{25-35}$ alone. The neuroprotective effect of citrate against $A{\beta}$-induced toxicity in PC12 cells was investigated using the WST-1 assay. Fluorescence spectroscopy showed that citrate inhibited dose-dependently the formation of $A{\beta}$ fibrils from ${\beta}$-amyloid peptides. The inhibition percentages of $A{\beta}$ fibril formation by citrate (1, 2.5, and 5 mM) were 31%, 60%, and 68% at 7 days, respectively in thioflavin-T (Th-T) assay. WST-1 assay revealed that the toxic effect of $A{\beta}_{25-35}$ was reduced, in a dose-dependent manner to citrate. The percentages of neuroprotection by citrate (1, 2.5, and 5 mM) against $A{\beta}-induced$ toxicity were 19%, 31 %, and 34%, respectively. We report that citrate inhibits the formation of $A{\beta}$ fibrils in vitro and has neuroprotective effect against $A{\beta}$-induced toxicity in PC12 cells. Neuroprotective effects of citrate against $A{\beta}$ might be, to some extent, attributable to its inhibition of $A{\beta}$ fibril formation. Although the mechanism of anti-amyloidogenic activity is not clear, the possible mechanism is that citrate might have two effects, salting-in and surfactant effects. These results suggest that citrate could be of potential therapeutic value in Alzheimer's disease.

Ginsenoside Rg3 inhibits the production of interleukin-1$\beta$, tumor necrosis factor-$\alpha$, and nitric oxide in rat microglia

  • Joo, Seong-Soo;Won, Tae-Joon;Hwang, Kwang-Woo;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.138.1-138.1
    • /
    • 2003
  • Inflammatory responses from activated microglia are one of major causes of Alzheimer's disease (AD). Particularly, proinflammatory cytokines (PC), such as IL-l$\beta$ and TNF-$\alpha$, and nitric oxide (NO) are correlated with AD by inducing the chronic inflammation in the brain. In the present study, we found that microglia are activated by lipopolisaccharide (LPS) and Abeta42 (A$\beta$42), and those activated microglia produced such repertoires up to 72h with a turning point at 24h. However, no dose dependecy was found during the chasing time courses (6h to 72h). (omitted)

  • PDF

Analysis of the Mental Images in Episodic Memory with Comparison between the patients with Dementia of Alzheimer Type and Healthy Elderly People (알츠하이머성 치매환자와 건강한 노인의 일화기억 이미지 비교 분석)

  • Han, Kyung-Hun;Ernst, Poppel
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.1
    • /
    • pp.79-107
    • /
    • 2009
  • Episodic memory, i.e. memorization of information within a spatiotemporal environment, is affected Alzheimer's disease(AD), but its impairment may also be occurred in the normal aging process. The purpose of this study is to analyze and evaluate memory in with Dementia of Alzheimer Type by examining their cognitive skills in episodic memory using the technique. This new method involves assessing the mental images the subject's own past in the mind like projected and movies. Three patients in the early stage of Dementia of Alzheimer Type, one with mild depression, and 2 healthy controls for comparison were asked to retrieve their episodic memory of the previous day, week, month, and a day testing day. The answers were then analyzed with regards to their specific features as emotional state, color, and time order. In the following day, the subjects were tasked to recall again the images they reproduced in the day's test order to observe of memory. Results showed that all 3 patients failed to arrange the retrieved images in time order and their images of the previous day were unclear in color and were stationary like photographs, even when they reproduced the mental images at much quantity as controls. patients could not remember particular events of yesterday, and only recalled the general occurrences of every day life. These results suggest that in the early stage of Dementia of Alzheimer Type, difficulties in the retrieval of recent episodic memory begin to primarily occur, and qualitative impairment happens earlier than quantitative.

  • PDF

Theracurmin Ameliorates Cognitive Dysfunctions in 5XFAD Mice by Improving Synaptic Function and Mitigating Oxidative Stress

  • Kim, Jihyun;Kim, Jaehoon;Huang, Zhouchi;Goo, Nayeon;Bae, Ho Jung;Jeong, Yongwoo;Park, Ho Jae;Cai, Mudan;Cho, Kyungnam;Jung, Seo Yun;Bae, Soo Kyung;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 2019
  • As the elderly population is increasing, Alzheimer's disease (AD) has become a global issue and many clinical trials have been conducted to evaluate treatments for AD. As these clinical trials have been conducted and have failed, the development of new theraphies for AD with fewer adverse effects remains a challenge. In this study, we examined the effects of Theracurmin on cognitive decline using 5XFAD mice, an AD mouse model. Theracurmin is more bioavailable form of curcumin, generated with submicron colloidal dispersion. Mice were treated with Theracurmin (100, 300 and 1,000 mg/kg) for 12 weeks and were subjected to the novel object recognition test and the Barnes maze test. Theracurmin-treated mice showed significant amelioration in recognition and spatial memories compared those of the vehicle-treated controls. In addition, the antioxidant activities of Theracurmin were investigated by measuring the superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels. The increased MDA level and decreased SOD and GSH levels in the vehicle-treated 5XFAD mice were significantly reversed by the administration of Theracurmin. Moreover, we observed that Theracurmin administration elevated the expression levels of synaptic components, including synaptophysin and post synaptic density protein 95, and decreased the expression levels of ionized calcium-binding adapter molecule 1 (Iba-1), a marker of activated microglia. These results suggest that Theracurmin ameliorates cognitive function by increasing the expression of synaptic components and by preventing neuronal cell damage from oxidative stress or from the activation of microglia. Thus, Theracurmin would be useful for treating the cognitive dysfunctions observed in AD.

A Potent Medicinal Plant: Polygala Tenuifolia

  • Anvi, RANA
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Polygala Tenuifolia, also described as Yuan Zhi, is a conventional botanic plant found in Korea and China. It's most well- known promise is to improve cognition and guard against mental disorders, cure sputum, anxiety, and sleeplessness, and keep the central nervous system health. The pharmacological aspects of Polygala Tenuifolia's genesis and component compounds reveal the neuroprotective potential in connection to Alzheimer's disease. It contains three herbs: Bokshin, Sukchangpo, and Wongi. P. Tenuifolia's primary ingredients are Xanthone glycosides, Triterpenoid saponins, and Oligosaccharides. Polygalasaponins and Etrahydrocolumbamine are the major components, and they've been widely used for more than a century to relieve mood and psychological illnesses, particularly in North Asian countries such as Korea, China, Japan, and Taiwan. P. Tenuifolia extract eliminates allergic illnesses such as eczema and contact dermatitis by modulating Protein kinase-A and Mitogen-protein kinase-38. In vitro and in vivo studies linking P. tenuifolia root ingredients to a variety of pharmacological effects pertinent to AD show that this species' isolates may function through polyvalency. In great health, people can take up to 250-300 mg per day. It was given in peer-reviewed studies at dosages of 100-150 mg many times each day. There is minimal evidence that it improves verbal memory in experimental animals.

Isolation of specific butyrylcholinesterase (BuChE) inhibitors from the rhizome extract of Curcuma zedoaria

  • Kim, Young-Sup;Park, Eun-Kyung;Heor, Jung-Hee;Kim, Seong-Kie;Kim, Jung-Sook;Choi, Yeon-Hee;Seo, Jee-Hee;Lee, Bong-Ho;Choi, Byoung-Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.259.3-260
    • /
    • 2003
  • Alzheimer's disease(AD) is the most common cause of senile dementia in elderly people and the causes of AD are currently not fully understood. However, AD is generally understood to be associated with reduced levels of acetylcholine in the brain as cholinergic neurons are lost and cholinergic neurotransmission declines. There are growing evidences that two types of cholinesterase(ChE), i.e., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) both play important roles in the regulation of acetylcholine level in brain and thus may have a crucial role in the development and progression of AD. (omitted)

  • PDF

Differences of Tc-99m HMPAO SPECT Imaging in the Early Stage of Subcortical Vascular Dementia Compared with Alzheimer's Disease (초기 단계의 피질하 혈관성 치매와 알쯔하이머병에서 Tc-99m HMPAO SPECT 영상 소견 차이)

  • Park, Kyung-Won;Kang, Do-Young;Park, Min-Jeong;Cheon, Sang-Myung;Cha, Jae-Kwan;Kim, Sang-Ho;Kim, Jae-Woo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.6
    • /
    • pp.530-537
    • /
    • 2007
  • Purpose: The aim of this study is to assess the specific patterns of regional cerebral blood flow (rCBF) in patients with the early stage of subcortical vascular dementia (SVaD) and Alzheimer's disease (AD) using Tc-99m HMPAO SPECT, and to compare the differences between the two conditions. Materials and Methods: Sixteen SVaD, 46 AD and 12 control subjects participated in this study. We included the patients with SVaD and AD according to NINCDS-ADRDA and NINDS-AIREN criteria. They were all matched for age, education and clinical dementia rating scores. Three groups were evaluated by Tc-99m HMPAO SPECT using statistical parametric mapping (SPM) for measuring rCBF. The SPECT data of patients with SVaD and AD were compared with those of normal control subjects and then compared with each other. Results: SPM analysis of the SPECT image showed significant perfusion deficits on the right temporal region and thalamus, left insula and superior temporal gyrus, both cingulate gyri and frontal subgyri in patients with SVaD and on the left supramarginal gyrus, superior temporal gyrus, postcentral gyrus and inferior parietal lobule, right fugiform gyrus and both cingulate gyri in AD compared with control subjects (uncorrected p<0.01). SVaD patients revealed significant hypoperfusion in the right parahippocampal gyrus with cingulated gyrus, left insula and both frontal subgyral regions compared with AD (uncorrected p<0.01). Conclusion: Our study shows characteristic and different pattern of perfusion deficits in patients with SVaD and AD, and these results may be helpful to discriminate the two conditions in the early stage of illness.