• Title/Summary/Keyword: Alveolar ridge width

Search Result 49, Processing Time 0.028 seconds

Effect of slow forced eruption on the vertical levels of the interproximal bone and papilla and the width of the alveolar ridge

  • Kwon, Eun-Young;Lee, Ju-Youn;Choi, Jeomil
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.379-385
    • /
    • 2016
  • Objective: Forced eruption has been proposed for the reconstruction of deficient bone and soft tissue. The aim of this study was to examine the changes in the alveolar ridge width and the vertical levels of the interproximal bone and papilla following forced eruption. Methods: Patients whose hopeless maxillary anterior teeth were expected to undergo severe bone resorption and soft tissue recession upon extraction were recruited. In addition, patients whose maxillary anterior teeth required forced eruption for restoration due to tooth fracture or dental caries were included. Before and after forced eruption, the interproximal bone height was measured by radiographic analysis, and changes in the alveolar ridge width and the interproximal papilla height were measured with an acrylic stent. Results: This prospective study demonstrated that the levels of the interproximal alveolar bone and papilla were significantly increased by 1.36 mm and 1.09 mm, respectively, in the vertical direction. However, the alveolar ridge width was significantly reduced by an average of 0.67 mm in the buccolingual direction. The changes in the level of the interproximal alveolar bone and papilla were positively correlated. Conclusions: Although the levels of the interproximal bone and papilla were significantly increased, the alveolar ridge width was significantly decreased following forced eruption. There was a modest positive and significant correlation between the changes in the height of the interproximal alveolar bone and the papilla. Based on our findings, modification of vertical forced eruption should be considered when augmentation of the alveolar ridge width is required.

THE STUDY ON RIDGE PRESERVATION FOR IMPLANT SITE DEVELOPMENT (임플란트 식립을 위한 치조제 보존술에 관한 연구)

  • Kim, Jong-Won;Jeon, Ha-Ryong;Hong, Jong-Rak
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.5
    • /
    • pp.430-435
    • /
    • 2006
  • Purpose : The aim of this study was to investigate healed bovine bone particles ($Bio-Oss^{(R)}$) and absorbable collagen sponge ($CollaPlug^{(R)}$) applied extraction socket site at 4-6 months' post-extraction. Material and methods : From August, 2004 to October, 2005, 17 sockets in 5 adult patients were selected out of the patients whose received ridge preservation using bovine bone particles and absorbable collagen sponges at Dept. of oral and maxillofacial surgery in Samsung Medical Center. There were 5 male patients, ages 30 to 58 years. Immediate postoperation and 4-6 months after operation study models were compared to evaluate the ridge dimension by measuring vertical height and horizontal width of alveolar ridge. Results : The measurements at 4-6 months revealed, in the ridge dimension, a loss of vertical height of 0.91${\pm}$0.40mm and horizontal width of 1.25${\pm}$0.58mm. There was no adverse reaction. Conclusion : This study suggests that treatment of extraction sockets with graft materials and collagen sponges is valuable in preserving alveolar bone in extraction sockets and preventing alveolar ridges defects.

Alveolar ridge augmentation for implant placement (임플란트식립을 위한 치조제증대술)

  • Yu, Sang-Joun
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.768-777
    • /
    • 2019
  • Alveolar bone resorption are unpredictable and always occur after tooth extraction. Such bone resorption causes insufficient alveolar ridge which make implant placement difficult. There are many techniques to increase the alveolar ridge. Representative procedures include ridge split, guided bone regeneration, bone graft using autogenous block bone, and alveolar distraction. In each procedure, there are indications and complications. Depending on the shape and the width of bone defects, we can choose procedures for horizontal bone augmentation and vertical bone augmentation.

  • PDF

Lateral alveolar ridge augmentation procedure using subperiosteal tunneling technique: a pilot study

  • Kakar, Ashish;Kakar, Kanupriya;Sripathi Rao, Bappanadu H.;Lindner, Annette;Nagursky, Heiner;Jain, Gaurav;Patney, Aditya
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.3.1-3.8
    • /
    • 2018
  • Background: In this research article, we evaluate the use of sub-periosteal tunneling (tunnel technique) combined with alloplastic in situ hardening biphasic calcium phosphate (BCP, a compound of β-tricalcium phosphate and hydroxyapatite) bone graft for lateral augmentation of a deficient alveolar ridge. Methods: A total of 9 patients with deficient mandibular alveolar ridges were included in the present pilot study. Ten lateral ridge augmentation were carried out using the sub-periosteal tunneling technique, including a bilateral procedure in one patient. The increase in ridge width was assessed using CBCT evaluation of the ridge preoperatively and at 4 months postoperatively. Histological assessment of the quality of bone formation was also carried out with bone cores obtained at the implant placement re-entry in one patient. Results: The mean bucco-lingual ridge width increased in average from 4.17 ± 0.99 mm to 8.56 ± 1.93 mm after lateral bone augmentation with easy-graft CRYSTAL using the tunneling technique. The gain in ridge width was statistically highly significant (p = 0.0019). Histomorphometric assessment of two bone cores obtained at the time of implant placement from one patient revealed 27.6% new bone and an overall mineralized fraction of 72.3% in the grafted area 4 months after the bone grafting was carried out. Conclusions: Within the limits of this pilot study, it can be concluded that sub-periosteal tunneling technique using in situ hardening biphasic calcium phosphate is a valuable option for lateral ridge augmentation to allow implant placement in deficient alveolar ridges. Further prospective randomized clinical trials will be necessary to assess its performance in comparison to conventional ridge augmentation procedures.

A clinico-radiographic and histomorphometric analysis of alveolar ridge preservation using calcium phosphosilicate, PRF, and collagen plug

  • Tarun Kumar, AB;Chaitra, N.T.;Gayatri Divya, PS;Triveni, M.G.;Mehta, Dhoom Singh
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.32.1-32.7
    • /
    • 2019
  • Background: Tooth extraction commonly leads to loss of residual alveolar ridge, thus compromising the room available for the implant placement. To combat the post-extraction alveolar loss, alveolar ridge preservation is practiced, with the advent of the biomaterial available. The purpose of this study was to assess the efficiency of calcium phosphosilicate biomaterial in alveolar ridge preservation. Twenty patients indicated for extraction were selected followed by socket grafting using calcium phosphosilicate. Implant placement was done 6 months postoperatively during which a core was harvested from the preserved sockets. Clinico-radiographic measurements of hard and soft tissues were taken at baseline and 6 months post-grafting. Results: There were no significant changes in the radiographic and soft tissue parameters while significant changes in hard tissue parameters with 1.9 mm (p = 0.013) gain in mid-buccal aspect and 1.1 mm (p = 0.019) loss in horizontal bone width were observed. The histomorphometric evaluation depicted the vital bone volume of 54.5 ± 16.76%, non-mineralized tissue 43.50 ± 15.80%, and residual material 2.00 ± 3.37%. Conclusion: The implants placed in these preserved ridges presented 100% success rate with acceptable stability after a 1-year follow-up, concluding calcium phosphosilicate is a predictable biomaterial in alveolar ridge preservation.

IMPLANT REHABILITATION IN THE UNFAVORABLE ALVEOLAR RIDGE (불량한 치조제에서의 임플랜트 시술증례)

  • Park, Jae-Bum;Ahn, Sang-Hun;Cheung, Soo-Il;Jo, Byung-Woan;Ahn, Jae-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 1997
  • The most critical factor in determining which type of implant to be used would be the available bone of the patient. Usually a minimum of 5mm in the bone width and 8mm in the bone height is necessary to ensure primary implant stability and maintain the integrity of bone contact surface. Placement of implant is limited by the several anatomic strutures such as maxillary sinus, floor of the nose, inferior alveolar neurovascular bundle and nasopalatine foramen, etc. When severe resorption of alveolar ridge is encountered, implant placement would be a problematic procedure. A number of techniques to improve the poor anatomic situations have been proposed. This article reports 4 cases of patients using surgical procedures such as blade implant technique, cortical split technique in the anterior maxillary area, sinus lifting and lateral repositioning of inferior alveolar nerve, We treated dental implant candidates with unfavorable alveolar ridge utilizing various surgical techniques, resulted in successful rehabilitation of edentulous ridge.

  • PDF

A MORPHOLOGICAL STUDY ON RESIDUAL ALVEOLAR RIDGES OF EDENTULOUS JAWS (무치악 잔존치조제의 형태학적 연구)

  • Choi, Ho-Young;Woo, Yi-Hyung;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.73-89
    • /
    • 1991
  • Impression ragistration is an improtant and difficult phase of prosthodontic treatment procedures and a tray of appropriate size and shape is essential to obtain the accurate impression. Particularly, in edentulous patients, the size and forms of their residual alveolar ridges are different from one another. Therefore, in this study, various measurements were taken on the edentulous models. And the measurements were analyzed and compared with one another. The results were as follows ; 1. The mean of denture bearing area was $32.86cm^2$ in the upper jaws, $24.20cm^2$ in the lower jaws and the variation of denture bearing area was greater in the upper than in the lower jaws and in males than in females. 2. The mean of A-P(anteroposterior) ridge length was 48.72mm in the upper jaws, 53.05mm in the lower jaws and that of males was longer than that of females. 3. The mean of most posterior ridge width was 47.23mm in the upper jaws, 58.03mm in the lower jaws and the difference of that between males and females was least in both jaws. 4. In the upper jaws, the mean of ridge width was 29.66mm on anterior 1/4, 42.79mm on middle, 48.95mm on posterior 1/4 line and the mean of palatal height was 4.56mm on anterior 1/4, 10.01mm on middle, 10.84mm on posterior 1/4 line. 5. In the lower jaws, the mean of ridge width was 33.24mm on anterior 1/4, 50.19mm on middle, 59.16mm on posterior 1/4 line and the mean of lingual ridge height was 5.49mm on anterior 1/4, 9.16mm on middle, 16.72mm on posterior 1/4 line. 6. The correlation coefficient(=r) between denture bearing area and A-P ridge length was 0.83 in the upper jaws and 0.75 in the lower jaws. The corelation between denture bearing area and AP ridge length was statistically significant, but, between denture bearing area and A-P ridge length and between A-P ridge length and the most posterior ridge width was not statistically significant in both jaws. 7. Alveolar ridge forms were classified into three(ovoid, "u" shape, and "v"shape) categories. In the upper jaws, ovoid was 66%, "u" shape was 24%, and "v" shape was 10%, in the lower jaws, ovoid was 66.7%, "u" shape was 20%, and "v" shape was 13.3%.

  • PDF

RIDGE AUGMENTATION USING OF HARD TISSUE $REPLACEMENT(HTP^{TM})$;A CASE REPORT (치조제 증강을 위한 $HTR^{TM}$ 중합체 이식후 치유과정;증례보고)

  • Kim, Su-Gwan;Lim, Sung-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.1
    • /
    • pp.83-85
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of $HTR^{TM}$ (hard tissue replacement, Bioplant Inc, U.S.A) polymer on short-term healing as a grafting material for alveolar ridge augmentation. A 48-year-old female presented insufficient bone height and width for the placement of implants. $HTR^{TM}$ polymer was used for ridge augmentation. Bone biopsy was harvested 8 months after the ridge augmentation procedure. $HTR^{TM}$ polymer displayed rapid bone regeneration and mature lamellar and trabecular bone redevelopment. Clinical and histologic observation from the treatment of the patient presented suggest that $HTR^{TM}$ polymer seems to be a appropriate material for alveolar ridge augmentation.

  • PDF

Cone-beam computed tomographic evaluation of dimensional hard tissue changes following alveolar ridge preservation techniques of different bone substitutes: a systematic review and meta-analysis

  • Pickert, Finn Niclas;Spalthoff, Simon;Gellrich, Nils-Claudius;Tarraga, Juan Antonio Blaya
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.3-27
    • /
    • 2022
  • Purpose: This study was conducted to evaluate and compare the effects of different graft materials used in alveolar ridge preservation on dimensional hard tissue changes of the alveolar ridge, assessed using cone-beam computed tomography (CBCT) scans. Methods: A systematic electronic search of MEDLINE and the Cochrane Central Register of Controlled Trials and a manual search were conducted from November 2019 until January 2020. Randomized controlled trials were included if they assessed at least 1 variable related to vertical or horizontal hard tissue changes measured using CBCT scans. After a qualitative analysis of the included studies, subgroups were formed according to the graft material used, and a quantitative analysis was performed for 5 outcome variables: changes in vertical alveolar bone height at 2 points (midbuccal and midpalatal/midlingual) and changes in horizontal (buccolingual) alveolar bone width at 3 different levels from the initial crest height (1, 3, and 5 mm). Results: The search resulted in 1,582 studies, and after an independent 3-stage screening, 16 studies were selected for qualitative analysis and 9 for quantitative analysis. The metaanalysis showed a significantly (P<0.05) lower reduction of alveolar ridge dimensions for the xenogenic subgroup than in the allogenic subgroup, both vertically at the midbuccal aspect (weighted mean difference [WMD]=-0.20; standard error [SE]=0.26 vs. WMD=-0.90; SE=0.22) as well as horizontally at 1 mm (WMD=-1.32; SE=0.07 vs. WMD=-2.99; SE=0.96) and 3 mm (WMD=-0.78; SE=0.11 vs. WMD=-1.63; SE=0.40) from the initial crest height. No statistical analysis could be performed for the autogenic subgroup because it was not reported in sufficient numbers. Conclusions: Less vertical and horizontal bone reduction was observed when xenogenic graft materials were used than when allogenic graft materials were used; however, the loss of alveolar ridge dimensions could not be completely prevented by any graft material.

The preliminary study for three-dimensional alveolar bone morphologic characteristics for alveolar bone restoration

  • Cho, Hyun-Jae;Jeon, Jae-Yun;Ahn, Sung-Jin;Lee, Sung-Won;Chung, Joo-Ryun;Park, Chang-Joo;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.33.1-33.7
    • /
    • 2019
  • Background: The concept of the ideal morphology for the alveolar bone form is an important element to reconstruct or restore the in maximizing esthetic profile and functional alveolar bone restoration. The purpose of this preliminary study is to evaluate the normal alveolar bone structure to provide the standard reference and guide template for use in diagnosing for implant placement, determining the correct amount of bone augmentation in actual clinical practice and producing prostheses based on three-dimensional imaging assessment of alveolar bone. Methods: This study was included 11 men and 11 women (average age, 22.6 and 24.5 years, respectively) selected from among 127 patients. The horizontal widths of alveolar bone of maxilla and mandible were measured at the crestal, mid-root, and root apex level on MDCT (multi-detector computed tomography) images reconstructed by medical imaging software. In addition, tooth dimensions of the central incisors, canines, second premolars, and first molars of maxilla and mandible, including the horizontal width of the interdental alveolar bone crest, were also measured and statistically analyzed. Results: The horizontal alveolar bone width of the palatal side of maxilla showed a distinct increment from the alveolar bone crest to the apical region in both anterior and posterior areas. The average widths of the maxillary alveolar ridge were as follows: central incisor, 7.43 mm; canine, 8.91 mm; second premolar, 9.57 mm; and first molar, 12.38 mm. The average widths of the mandibular alveolar ridge were as follows: central incisor, 6.21 mm; canine, 8.55 mm; second premolar, 8.45 mm; and first molar, 10.02 mm. In the buccal side, the alveolar bone width was not increased from the crest to the apical region. The horizontal alveolar bone width of an apical and mandibular border region was thinner than at the mid-root level. Conclusions: The results of the preliminary study are useful as a clinical guideline when determining dental implant diameter and position. And also, these measurements can also be useful during the production of prefabricated membranes and customized alveolar bone scaffolds.