• 제목/요약/키워드: Aluminum wear

검색결과 173건 처리시간 0.032초

자동차 부품용 2700계열 Al소결체 제작에 관한 연구 (A Study on the Fabrication of 2700 Series Al-alloy Sintered for Automobile Application)

  • 임태환;장태석
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5438-5442
    • /
    • 2011
  • 자동차용 경량소결부품으로 사용하기 위하여 2712 Al 합금 및 2712에 세라믹스를 각각 10, 20, 33% 첨가한 소결체의 기계적 특성에 대하여 조사하였다. 그 결과, (1)모든 소결체에서 4~7%의 기공이 잔류하는 것을 발견하였다. (2)시효처리한 2712 소결체 및 10, 20, 33% 세라믹스 함유 소결체의 인장강도 값은, 12분 소결에서는 각각 165, 260, 256, 166 N/$mm^2$, 30분 소결에서는 각각 186, 229, 219, 202 N/$mm^2$로 나타나, 세라믹스를 10% 첨가하여 12분 소결한 경우가 가장 우수한 인장강도 값을 나타내었다. 또한, 소결체의 최대 연신율값 3.6%는 세라믹스를 10% 첨가하여 30분 소결 후 시효처리한 소결체에서 나타났다. (3)시효처리 후의 소결체 표면의 최대 겉보기 경도값 ($H_RF$) 97은 세라믹스를 10% 첨가하고 30분 소결한 경우에 나타났다. (4)가장 낮은 내마모량 값 $174{\times}10^{-3}mm^3$은 10% 세라믹스를 첨가하여 시효처리한 소결체에서 나타났다. 이러한 결과들로부터 세라믹스를 10% 첨가한 2712 소결체가 Al 엔진부품 제조에 가장 적합한 것으로 판단되었다.

드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구 (A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools)

  • 강용진;김도현;장영준;김종국
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구 (Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields)

  • 연성룡;이광희;김철현;이철희;최종명
    • Tribology and Lubricants
    • /
    • 제31권1호
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.

Characteristics of the AlON-Al2O3 Ceramic Coatings on the Al2021 Alloy by Electrolytic Plasma Processing

  • Wang, Kai;Byeon, Sang-Sik;Kim, Geun-Woo;Park, Keun-Young;Ahmed, Faheem;Koo, Bon-Heun
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.155-158
    • /
    • 2012
  • In this work, AlON-$Al_2O_3$ coatings were prepared on Al2021 alloy by the electrolytic plasma processing (EPP) method. The experimental electrolytes include: 2 g/l NaOH as the electrolytic conductive agent, 10 g/l $Na_2AlO_2$ as the alumina formative agent, and 0.5 g/l $NaNO_2$, $NaNO_3$, and $NH_4NO_3$ as the nitride inducing agents. The effects of different nitrogen inducing agents were studied by a combined compositional and structural analyses of the ceramic coatings carried out by Xray diffractometry (XRD) and scanning electron microscopy (SEM) for the specimens EPP-treated at room temperature for 15 min under a hybrid voltage of 260 DC along with an AC 50 Hz power supply (200 V). Microhardness tests and wear tests were carried out to correlate the evolution of the microstructure and the resulting mechanical properties. Potentiodynamic polarizations and immersion corrosion tests were carried out in 3.5wt% NaCl water solutions under static conditions in order to evaluate the corrosion behavior of the coated samples. The results demonstrate that $NaNO_2$ is proven to be a good nitrogen inducing agent to produce high quality AlON-$Al_2O_3$ ceramic coatings.

용탕단조한 $Al/Al_2O_3$ 복합재료에서의 예비성형체 변형 및 섬유열처리 영향 (Preform Deformation and Fiber Heat-Treatment Effect in Squeeze Cast $Al/Al_2O_3$ Metal Matrix Composites)

  • 지동철;정성실;조경목;박익민;김진
    • 한국주조공학회지
    • /
    • 제13권1호
    • /
    • pp.62-70
    • /
    • 1993
  • This study presents the effect of applied pressure on the preform deformation during squeeze casting of $Al_2O_3$ short fiber reinforced aluminum alloy (AC8A) metal matrix composites. A preliminary model based on the general beam theory is suggested for the prediction of the preform deformation. Two different commercially available $Al_2O_3$ short fiber (Saffil, Kaowool) were used to study the influence of the fibers on the microstructure and mechanical properties of the squeeze cast $Al/Al_2O_3$ composites. The composites were fabricated with the applied pressure of 75 MPa which was found to be the optimum condition for the squeeze casting of the composites in this study. For the amorphous Kaowool fiber, hard crystalline Mullite phase was formed with heat treatment. Both of amorphous and the crystallized Kaowool fibers were used to fabricate $Al/Al_2O_3$ composites. Microhardness of crystallized Kaowool fiber revealed higher than that of the amorphous Kaowool fiber in the squeeze cast composites. It was also found that the wear resistance of Kaowool fiber reinforced composites increased with the amount of Mullite.

  • PDF

마찰재에 함유된 금속섬유와 마찰 특성의 연관관계 (The Effect of Metal Fibers on the Tribology of Automotive Friction Materials)

  • 고길주;조민형;장호
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행 (Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys)

  • ;백응률
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

글리터를 포함한 네일 에나멜 제품의 유해 금속 분석 (Determination of Hazardous Metals in Nail Enamel Containing Glitter)

  • 고숙경;정삼주;박영혜;박애숙;김현정;박건용;오영희
    • 한국환경보건학회지
    • /
    • 제43권2호
    • /
    • pp.103-110
    • /
    • 2017
  • Objectives: This study was performed to provide basic data for the re-establishment of standards (criteria) and analytical methods for hazardous metals in nail enamel. Methods: Ten metals (lead; Pb, arsenic; As, cadminum; Cd, antimony: Sb, cobalt; Co, nikel; Ni, copper; Cu, chromium; Cr, aluminum; Al, and mercury; Hg) were measured in 67 commercial nail enamels containing glitter and/or pearls. The content of hazardous metals (excepting Hg) was determined by using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) after microwave digestion. Mercury content was measured by a mercury analyzer without any preparation. Results: The detected ranges of the intact samples were as follows: $ND-1.756{\mu}g/g$ for Pb, $ND-1.24{\mu}g/g$ for As, ND for Cd, $ND-20.41{\mu}g/g$ for Sb, $ND-12.36{\mu}g/g$ for Co, $ND-7.908{\mu}g/g$ for Ni, $0.088-79.27{\mu}g/g$ for Cu, $0.281-18.54{\mu}g/g$ for Cr, $13.78-3563{\mu}g/g$ for Al, and $ND-0.044{\mu}g/g$ for Hg. After centrifugation, the detected ranges of supernatant were as follows: $ND-0.435{\mu}g/g$ for Pb, $ND-0.504{\mu}g/g$ for As, ND for Cd, $ND-0.035{\mu}g/g$ for Sb, $ND-13.17{\mu}g/g$ for Co, $ND-0.232{\mu}g/g$ for Ni, $0.117-90.07{\mu}g/g$ for Cu, $0.174-2.787{\mu}g/g$ for Cr, and $9.459-1565{\mu}g/g$ for Al. The results of this analysis showed that the levels of heavy metals such as Pb, As, and Sb were much higher in the intact samples than those of supernatant. Conclusion: In the present study, we found that the levels of hazardous metals were significantly different depending on the status of the presence of glitter. Based on the results, we recommend that the product consumer refrain from prolonged application of nail enamel, avoid biting or chewing the nails, and wear gloves during cooking and washing dishes.

수종 광중합 복합 레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구 (A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE DEPTH OF CURE AND LIGHT CURING TIME)

  • 김경현;권오승;김현기;백규철;엄정문;권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.35-60
    • /
    • 1997
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc, depend on the degree of conversion of the resin components. The clinical behavior of restorative resins varies brand to brand. Part of this variation is associated with the filler and differences in the polymer matrix. The polymer matrix of resins may differ because the involved monomers are dissimilar and because of variation in the catalyst system. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the depth of cure and light curing time. 7mm diameter cylindrical aluminum molds were filled with each of five different hybrid light curing composite resins(Z-100, Charisma, Herculite XRV, Prisma TPH, Veridonfil) on the thin resin films. The molds were 1mm, 2mm, 3mm, 4mm, and 5mm in depth to produce resin films of various heights. Each sample was given 20sec, 40sec, and 60sec illumination with a light source. The degree of conversion of carbon double bonds to single bonds in the resin films was examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows; 1. There was difference in the degree of conversion among five light curing composite resins according to the depth of cure for 20sec, 40sec, and 60sec illumination with light source with statistical significance(P<0.05). 2. Five light curing composite resins show lower degree of conversion at surface of the resin than depth of 1mm. 3. The degree of conversion of five light curing composite resins was siginificantly reduced from the maximum for the resin film when the light passed through as little as 1mm of each composite. 4. The degree of conversion of five light curing composite resins decrease significantly at the depth of 4mm, and polymerization was not occured at the depth of 5mm except for Prisma TPH. 5. The degree of conversion of five light curing composite resins was increased with increased light curing time, and there was no significant differences in the degree of conversion above 4mm in Z-100, 3mm in Charisma, and at depth of 5mm in Herculite XRV and Veridonfil(P>0.05).

  • PDF