• Title/Summary/Keyword: Aluminum substrate

Search Result 366, Processing Time 0.027 seconds

Development of 3D Micro-Nano Hybrid Patterns Using Anodized Aluminum and Micro-Indentation (양극산화된 알루미늄과 마이크로 인덴데이션을 이용한 3차원 마이크로-나노 하이브리드 패턴 제작)

  • Kwon, Jong-Tae;Shin, Hong-Gue;Kim, Byeong-Hee;Seo, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1139-1143
    • /
    • 2007
  • A simple method for the fabrication of 3D micro-nano hybrid patterns was presented. In conventional fabrication methods of the micro-nano hybrid patterns, micro-patterns were firstly fabricated and then nano-patterns were formatted on the micro-patterns. Moreover, these micro-nano hybrid patterns could be fabricated on the flat substrate. In this paper, we suggested the fabrication method of 3D micro-nano hybrid patterns using micro-indentation on the anodized aluminum substrate. Since diameter of the hemispherical nano-pattern can be controlled by electrolyte and applied voltage in the anodizing process, we can easily fabricated nano-patterns of diameter of loom to 300nm. Nano-patterns were firstly formatted on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns of diameter of 150nm were fabricated by anodizing process, and then micro-pyramid patterns of the side-length of $50{\mu}m$ were formatted on the nano-patterns using micro-indentation. Finally we successfully replicated 3D micro-nano hybrid patterns by hot-embossing process. 3D micro-nano hybrid patterns can be applied to nano-photonic device and nano-biochip application.

Control of the Pore Size of Sputtered Nickel Thin Films Supported on an Anodic Aluminum Oxide Substrate (스퍼터링을 통하여 다공성 양극산화 알루미늄 기판에 증착되는 니켈 박막의 기공 크기 조절)

  • JI, SANGHOON;JANG, CHOON-MAN;JUNG, WOOCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.434-441
    • /
    • 2018
  • The pore size of nickel (Ni) bottom electrode layer (BEL) for low-temperature solid oxide fuel cells embedded with ultrathin-film electrolyte was controlled by changing the substrate surface morphology and deposition process parameters. For ~150-nm-thick Ni BEL, the upper side of an anodic aluminum oxide (AAO) substrate with ~65-nm-sized pores provided ~1.7 times smaller pore size than the lower side of the AAO substrate. For ~100-nm-thick Ni BEL, the AAO substrate with ~45-nm-sized pores provided ~2.6 times smaller pore size than the AAO substrate with ~95-nm-sized pores, and the deposition pressure of ~4 mTorr provided ~1.3 times smaller pore size than that of ~48 mTorr. On the AAO substrate with ~65-nm-sized pores, the Ni BEL deposited for 400 seconds had ~2 times smaller pore size than the Ni BEL deposited for 100 seconds.

Effects of Ni layer as a diffusion barrier on the aluminum-induced crystallization of the amorphous silicon on the aluminum substrate (알루미늄 기판 상의 Ni layer가 a-Si의 AIC(Aluminum Induced Crystallization)에 미치는 영향)

  • Yun, Won-Tae;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • Aluminum induced crystallization of amorphous silicon was attempted by the aluminum substrate. To avoid the layer exchange between silicon and aluminum layer, Ni layer was deposited between these two layers by sputtering. To obtain the bigger grain of the crystalline silicon, wet blasted silica layer was employed as windows between the nickel and a-Si layer. Ni obtained after the annealing treatment at $520^{\circ}C$ was found to be a promising material for the diffusion barrier between silicon and aluminum. One way to obtain bigger grain of crystalline silicon layer applicable to solar cell of higher performance was envisioned in this investigation.

Effects of Heat Treatments of Aluminum Substrate on Nanopore Arrays in Anodic Alumina (열처리가 알루미나 나노기공의 배열에 미치는 영향)

  • Cho, S.H.;Oh, H.J.;Kim, S.S.;Joo, E.K.;Yoo, C.W.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.856-859
    • /
    • 2002
  • To investigate effects of heat treatments including grain size control in substrate aluminum on nanopore arrays in anodic alumina template, aluminum was heat treated at $500^{\circ}C$ for 1h. The heat treated aluminum was anodized by two successive anodization processes in oxalic solution and the nanopore arrays in anodic alumina layer were studied using TEM and FE-SEM. The highly ordered porous alumina templates with 110 nm interpore distance and 40 nm pore diameter have been observed and the pore array of the anodic alumina has a uniform and closely-packed honeycomb structure. In the case of alumina template obtained from heat treated aluminum substrate, the well- ordered nanopore region in anodic alumina increased and became more homogeneous compared with that from non-heattreated one.

Material Properties of Thick Aluminum Coating Made by Cold Gas Dynamic Spray Deposition (초음속 저온분사법에 의해 적층된 알루미늄 층의 재료 물성)

  • Lee, Jae-Chul;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.88-95
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold-spray uses supersonic gas flow to carry metallic powders to the substrate. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but in this study macro scale deposition was conducted. Properties of aluminum layer by cold-spray deposition such as coefficient of thermal expansion (CTE), modulus of elasticity. hardness, and electric conductivity were measured. The results showed that properties of aluminum layer by cold-spray deposition were different from properties of pure aluminum and aluminum alloy.

A Study on the Discharge Characteristics of Cylindrical Sputtering Apparatus and Microstructure (원통형 마그네트론 스퍼터링 장비의 방전특성과 박막구조에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • The purpose of this study is to prepare a high strength fiberglass reinforced metal. Aluminum covering was carried out over carbon materials such as carbon fiber in order to increase their wettability to molten metals such as aluminum. A sputtering apparatus with a cylindrical target was fabricated to carry out the covering. Sputtering was caused by glow discharge between the target and the two anode plates attached to its top and bottom. As the substrate for preliminary test, a thin carbon wire was used instead of carbon fiber, and the wire was placed at the central axis of the target. Aluminium coating was formed on the whole surface of the substrate. The formation rate and structure of coating were varied by controlling the electrical potential of substrate. When the substrate was electrically isolated, coating with columnar structure was formed with a formation rate of $15{\mu}m/hr$. In case of grounded substrate, coating with amorphous structure was formed with a formation rate of $7{\mu}m/hr$.

Fabrication of Anodic Aluminum Oxide on Si and Sapphire Substrate (실리콘 및 사파이어 기판을 이용한 알루미늄의 양극산화 공정에 관한 연구)

  • Kim Munja;Lee Jin-Seung;Yoo Ji-Beom
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.133-140
    • /
    • 2004
  • We carried out anodic aluminum oxide (AAO) on a Si and a sapphire substrate. For anodic oxidation of Al two types of specimens prepared were Al(0.5 $\mu\textrm{m}$)!Si and Al(0.5 $\mu\textrm{m}$)/Ti(0.1 $\mu\textrm{m}$)$SiO_2$(0.1 $\mu\textrm{m}$)/GaN(2 $\mu\textrm{m}$)/Sapphire. Surface morphology of Al film was analyzed depending on the deposition methods such as sputtering, thermal evaporation, and electron beam evaporation. Without conventional electron lithography, we obtained ordered nano-pattern of porous alumina by in- situ process. Electropolishing of Al layer was carried out to improve the surface morphology and evaluated. Two step anodizing was adopted for ordered regular array of AAO formation. The applied electric voltage was 40 V and oxalic acid was used as an electrolyte. The reference electrode was graphite. Through the optimization of process parameters such as electrolyte concentration, temperature, and process time, a regular array of AAO was formed on Si and sapphire substrate. In case of Si substrate the diameter of pore and distance between pores was 50 and 100 nm, respectively. In case of sapphire substrate, the diameter of pore and distance between pores was 40 and 80 nm, respectively

CORROSION BEHAVIOR OF Al-Zn ALLOY AS A SACRIFICIAL ANODE OF ORV TUBES

  • Jin, Huh;Lee, Ho-Kyun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.452-455
    • /
    • 1999
  • ORV which vaporizes LNG to NG is consisted of tube and header whose substrate is aluminum alloy. The corrosion of the tube is very severe because of sea water being used as the heating source. In this research to protect ORV substrate material, the corrosion behavior of aluminum alloys was investigated for the sacrificial role of Al-Zn alloy for ORV tubes. The electrochemical behavior of aluminum alloys in sea water was investigated. The corrosion behavior of thermally-sprayed and cladded samples were compared through salt spray tests. Al-Zn alloy can act as a sacrificial anode and cladded Al-Zn alloy has a better corrosion resistance than that of thermally sprayed one. The galvanic effect of Al-Zn to substrate material was conformed from scratched sample tests.

  • PDF

Anodic Alumina Based DRAM Package Substrate (양극산화 알루미나 기반의 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.853-858
    • /
    • 2010
  • DRAM package substrate has been demonstrated using a thick alumina layer produced by aluminum anodization process. To apply a transmission-based design methodology, 2 dimensional electromagnetic simulation is performed. The design parameters including signal line width/spacing and alumina's thickness are optimized based on the simulation analysis and are verified with the fabrication and the measurement of the test patterns on the anodic alumina substrate. DDR2 DRAM package is chosen as a design vehicle. Aluminum anodization technique has been applied successfully to fabricate new DRAM package substrate.

The electrical and optical properties of ZnO:Al films Prepared by ultrasonic spray Pyrolysis (초음파 분무법으로 제조한 ZnO:Al 박막의 전기 및 광학적 특성)

  • Lee, Soo-Chul;Moon, Hyun-Yeol;Lee, In-Chan;Ma, Tae-Young
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.283-286
    • /
    • 1999
  • Transparent conductive aluminum-doped ZnO(AZO) films Were prepared by a ultrasonic spray pyrolysis method at the substrate temperature below 23$0^{\circ}C$. A vertical type hot wall furnace was used as a reactor in the deposition system. Zinc acetate dissolved in methanol was selected as a precursor. The substrate temperature was varied from 18$0^{\circ}C$to 24$0^{\circ}C$. Aluminum (Al) was doped into ZnO films by incorporating anhydrous aluminum chloride (AlCl$_3$) in the zinc acetate solution. The proportion of the Al in the starting solution was varied from 0 wt % to 3.0 wt %. The crystallographic properties and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The resistivity of the films was measured by the Van der Pauw method, and the mobility and carrier concentration were obtained through the Hall effect measurements Transmittance was measured in the visible region. The effects of substrate temperature and aluminum content in the starling solution on the structural and electrical properties of the AZO films are discussed

  • PDF