• Title/Summary/Keyword: Aluminum sheet

Search Result 384, Processing Time 0.019 seconds

Texture of Asymmetrically Rolled AA 1050 Aluminum alloy (비대칭 압연한 AA 1050 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.326-327
    • /
    • 2007
  • A study on the texture and the formability after asymmetric rolled and subsequent heat-treated AA 1050 aluminum alloy sheets have been carried out. The specimens after the asymmetric rolling showed a very fine grain size, a decrease of <100>//ND, and an increase of <111>//ND textures. The change of plastic strain ratios has been investigated and it was found that they were higher than those of the initial Al sheet.

  • PDF

Texture of Frictionally Rolled AA 1050 Aluminum alloy (마찰 압연한 AA 1050 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.328-329
    • /
    • 2007
  • A study on the texture and the formability after frictional rolled and subsequent heat-treated AA 1050 aluminum alloy sheets have been carried out. The specimens after the frictional rolling showed a very fine grain size, a decrease of <100>//ND, and an increase of <111>//ND textures. The change of plastic strain ratios has been investigated and it was found that they were higher than those of the initial Al sheet.

  • PDF

Texture of Asymmetric Rolled Aluminum sheets (알루미늄 비대칭압연 집합조직)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.477-479
    • /
    • 2008
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND//<111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study. The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND//<111> texture components through asymmetric rolling in Al sheet.

  • PDF

Serration Behavior of AA5l82/Polypropylene/AA5182 Sandwich Sheets (알루미늄5182/폴리프로필렌/알루미늄5182 샌드위치 판재의 톱니모양 거동)

  • 김기주;신광선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.192-203
    • /
    • 2004
  • The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets have been developed for the application for automotive body panels in the future light weight vehicles with significant weight reduction. It has been reported that the 5182 aluminum sheet shows Luders band because of dissolved Mg atoms that causes fabrication process problem, especially surface roughness. The examination of serration behavior has been made after the tensile deformation of the AA/PP/AA sandwich sheets as well as that of the 5182 aluminum skin at room and elevated temperatures. All sandwich sheets and the 5182 aluminum skin showed serration phenomena on their flow curves. However, the magnitude of the serration was significantly diminished in the sandwich sheet with the high volume fraction of the polypropylene core. According to the results of the surface roughness analysis after the tensile test, the sandwich sheet evidently showed lower Luders band depth than the 5182 aluminum skin. Strain rate sensitivity, m-value, of the 5182 aluminum skin was -0.006. By attaching this skin with polypropylene core which has relatively large positive value, 0.050, m-value of the sandwich sheets was changed to the positive value. The serration reduction of the sandwich sheets was quantitatively investigated in the point of the effect on the polypropylene core thickness variation, that on the strain rate sensitivity. It was found that the serration reduction degree from the experimental results of the sandwich sheet was higher than that from the calculated values by the rule of mixture based on volume fraction of the skins and the core.

Formability for AA5182 sheet and AA5182/PP/AA5182 sandwich sheet (AA5182판재와 AA5182/PP/AA5182 샌드위치 판재의 성형성 평가)

  • 김대용;김기주;정관수;신광선;유동진
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.81-90
    • /
    • 2000
  • For automotive applications, a sandwich sheet which was made of a 5182 aluminum alloy (AA5182) sheet and a polypropylene (PP) sheet, AA5182/PP/AA5182, has been developed. In order to evaluate its formability, the forming limit diagrams (FLD) of the 5182 aluminum alloy sheet with 0.2mm thickness and the sandwich sheet with 1.2mm thickness have been obtained based on the modified Marciniak-Kuczynski (M-K) theory. To account for the anisotropy of the sheet, Hill's 1948 yield function has been applied. The FLD of the sandwich sheet was predicted to be better than that of the AA5182 sheet, which was well confirmed by experiments.

  • PDF

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets(Part 1 : Experiment) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 ( 1부 : 실험 ))

  • 금영탁;유동열;한병엽
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.202-207
    • /
    • 2003
  • In order to examine the springback amount and material properties of aluminum alloy sheets (AL1050 and AL5052) in the warm forming which forms the sheet above the room temperature, the stretch bending and draw bending tests and tensile test in various high temperatures are carried out. The warm forming temperature 15$0^{\circ}C$ is a transition in terms of the material properties: over the forming temperature 15$0^{\circ}C$, them $\sigma$$_{YS}$ , $\sigma$$_{TS}$ , E, K, n, etc. are bigger but $\varepsilon$ and plastic strain ratio are smaller. Below the forming temperature 15$0^{\circ}C$, there are no big differences in material properties as the forming temperature changes. AL5052 sheet has more springback effect than AL1050 sheet. While the springbacks of AL5052 and AL1050 sheets show a big reduction over the warm forming temperature 15$0^{\circ}C$ in the stretch bending test, the springback rapidly reduces in the warm forming temperature 15$0^{\circ}C$-20$0^{\circ}C$ for AL5052 sheet and 20$0^{\circ}C$-25$0^{\circ}C$ for AL1050 sheet in the draw bending test.

Plastic Strain Ratio and Texture of the ECAPed and Heat-treated Aluminum AA 1050 Sheet (ECAP 한 후 열처리한 알루미늄 AA 1050 합금 판재의 집합조직과 소성변형비 변화)

  • Akramov Saidmurod;Lee M. K.;Park B. H.;Kim I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.369-372
    • /
    • 2005
  • A study on the microstructure, the texture and the formability of the samples after ECAPed and subsequent heat-treated AA 1050 aluminum alloy sheet have been carried out. The specimens after the ECAP showed a very fine grain size, a decrease of <100> // ND. The <110>// ND textures appears in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has was as a parameter that expressed the formability of sheet metals. The change of the plastic Strain ratios after the ECAP and subsequent heat-treatment conditions were investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

  • PDF

Texture and Plastic Strain Ratio of the Severe Shear Deformed with ECAP and Heat-treated AA 1050 Aluminum Alloy Sheet (ECAP로 심한 전단 소성변형한 후 열처리한 AA 1050 알루미늄 합금 판재의 집합조직과 소성변형비)

  • Akramov S.;Lee M. K.;Park B. H.;Kim I.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.553-558
    • /
    • 2005
  • A study on the microstructure, the texture and the formability of the samples after ECAPed and subsequent heat-treated AA 1050 aluminum alloy sheet have been carried out. The specimens after the ECAP showed a very fine grain size, a decrease of <100> // ND, and an increase of <111> // ND textures. The $\{111\}<112>,\;\{123\}<634>,\;\{110\}<001>,\;\{112\}<111>,\;\{110\}<111>,\;and\;\{013\}<231>$ texture components were increased in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has was as a parameter that expressed the formability of sheet metals. The change of the plastic strain ratios after the ECAP and subsequent heat-treatment conditions were investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.