• Title/Summary/Keyword: Aluminum sheet

Search Result 387, Processing Time 0.03 seconds

Effects of Tape on Heat Transfer and Friction Factor in a Square Channel (사각 채널에 설치된 테이프가 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo-Whan;Kang, Ho-Keun;Bae, Sung-Taek;Putra, Ary Bachtiar Krishna
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2402-2407
    • /
    • 2007
  • Heat transfer distributions and friction factors in square channels (3.5 ${\times}$ 3.5 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. Tests are performed for Reynolds numbers ranging from 8,900 to 29,000. The rib height-to-channel hydraulic diameter, e/Dh, is kept at 0.057 and test section length-to-hydraulic diameter, L/Dh is 30. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 3.3cm, length of 90cm, and 2.5 turns. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. Each wall of the square channel is composed of isolated aluminum sections. The following conclusions from the experimental study were drawn as: 1) In the 4 heating wall channel with twisted tape inserts, Nusselt number based on bottom wall temperature is enhanced by 1.2 - 1.6 times if adding the axial interrupted ribs on the bottom wall only. 2) The twisted tape with interrupted ribs under the two-sided heating condition produces the highest heat transfer performance. 3) Friction factor data obtained for the square channel with twisted tape inserts plus axial interrupted ribs are less than those in the past publications for circular tubes with axial interrupted ribs and twisted tape inserts.

  • PDF

Effect of Welding Condition on Tensile Properties of Friction Stir Lap Joint of Dissimilar Al Alloy, KS5J32/AA6K31 (이종 알루미늄 합금 KS5J32/AA6K31 겹치기 마찰교반 접합부의 인장성질에 미치는 접합조건의 영향)

  • Kim, Sang-Ju;Yoon, Tae-Jin;Song, Sang-Woo;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.98-105
    • /
    • 2012
  • The focus of this investigation is to evaluate the effect of joining parameter on the microstructure and mechanical properties of welds produced by friction stir lap welding. The dissimilar Al alloys, KS5J32 and AA6K31, were joined by friction stir lap welding technique under several welding conditions, and KS5J32 alloy was placed on the top of AA6K31 alloy. The tool rotation speeds were 1000, 1250, and 1500rpm, and the welding speeds were 100, 300, 500, 700mm/min, respectively. The results showed that two shapes of nugget, such as onion ring and irregular vortex type, were observed with various revolutionary pitch. In all welding conditions, fracture occurred at the soften region of bottom sheet(AA6K31) and the strengths were 64~78% of those of base metal. Fractured positions were classified into three types : HAZ, triple point, void depending on the revolutionary pitch. The actual thickness of specimen at the fractured location was decreased with decreasing heat input. A linear relationship exists between the effective thickness of fractured position and peak load.

Flexible CdS Films for Selective control of Transmission of Electromagnetic Wave (유연성 기판위에 스퍼터링법으로 제조한 CdS 박막의 전자파차폐 특성평가)

  • Hur, Sung-Gi;Cho, Hyun-Jin;Jung, Hyun-Jun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.27-27
    • /
    • 2009
  • Non-stochiometric CdS:H films grown on polyethersulfon (PES) flexible polymer substrates at room temperature by R.F. sputtering technique. They exhibited a dark- and photo-sheet resistance of $2.7\times10^5$ and $\sim\;50\;{\Omega}$/square, respectively. These values were realized by an optimum control of both hydrogen doping-levels and the surface morphologies of the films. The comparison between the real and the simulated results for the shielding and the transmission by the free space measurement system in the X-band frequency range (8.2 - 12.4 GHz) was also addressed in this study. Samples overlapped with 13 layers of CdS:H/PES were consistent with the transmission results of pure aluminum metal films ($0.1\;{\Omega}$/square) deposited on PES substrates. As a result, by the simples tacking of the CdS:H/PES layers, the perfect control of the shielding and the transmission of the EM wave in the range of X-band frequency is possible by avisible light alone, and their results are especially very outstanding findings in the stealth function of the radome(Radar+Dome) such as aircrafts, ships, and missiles.

  • PDF

Radiopacity of restorative composites by conventional radiograph and digital images with different resolutions

  • Dantas, Raquel Venancio Fernandes;Sarmento, Hugo Ramalho;Duarte, Rosangela Marques;Meireles Monte Raso, Sonia Saeger;de Andrade, Ana Karina Maciel;Dos Anjos-Pontual, Maria Luiza
    • Imaging Science in Dentistry
    • /
    • v.43 no.3
    • /
    • pp.145-151
    • /
    • 2013
  • Purpose: This study was performed to evaluate and compare the radiopacity of dentin, enamel, and 8 restorative composites on conventional radiograph and digital images with different resolutions. Materials and Methods: Specimens were fabricated from 8 materials and human molars were longitudinally sectioned 1.0 mm thick to include both enamel and dentin. The specimens and tooth sections were imaged by conventional radiograph using #4 sized intraoral film and digital images were taken in high speed and high resolution modes using a phosphor storage plate. Densitometric evaluation of the enamel, dentin, restorative materials, a lead sheet, and an aluminum step wedge was performed on the radiographic images. For the evaluation, the Al equivalent (mm) for each material was calculated. The data were analyzed using one-way ANOVA and Tukey's test (p<0.05), considering the material factor and then the radiographic method factor, individually. Results: The high speed mode allowed the highest radiopacity, while the high resolution mode generated the lowest values. Furthermore, the high resolution mode was the most efficient method for radiographic differentiation between restorative composites and dentin. The conventional radiograph was the most effective in enabling differentiation between enamel and composites. The high speed mode was the least effective in enabling radiographic differentiation between the dental tissues and restorative composites. Conclusion: The high speed mode of digital imaging was not effective for differentiation between enamel and composites. This made it less effective than the high resolution mode and conventional radiographs. All of the composites evaluated showed radiopacity values that fit the ISO 4049 recommendations.

The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment (반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

Fabrication of Nanowellstructured and Nanonetstructured Metal Films using Anodic Porous Alumina Film (다공성 알루미나 박막을 이용한 금속 나노우물과 나노그물 구조의 박막 제작)

  • Noh, Ji-Seok;Chin, Won-Bai
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.518-526
    • /
    • 2006
  • Nanoporous alumina film was fabricated by anodization of an aluminum sheet. Highly ordered nanowellstructured and nanonets-tructured metal films were fabricated by vacuum evaporation of several metals(Al, Sn, and Co) using the anodic nanoporous alumina film as a template. In this experiment, an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used. The resistance heating method was adopted for evaporating a desired metal, and vapor deposition was carried out under the base pressure of torr. It was founded that whether the structure fabricated by vacuum evaporation is nanowell or nanonet is dependent on the amount of deposited material. When an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used, a nanowell-structured film was fabricated when a sufficient amount of metal was suppled to cover the surface pores. On the other hand, nanonet-structured film was fabricated bellow a half the amount of metal required for nanowell-structured film.

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.

Novel Deposition Technique of ZnO:Al Transparent Conduction Oxide Layer on Chemically Etched Glass Substrates for High-haze Textured Surface

  • Park, Hyeongsik;Pak, Jeong-Hyeok;Shin, Myunghoon;Bong, Sungjae;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.426.1-426.1
    • /
    • 2014
  • For high performance thin film solar cells, texturing surface, enhancing the optical absorptionpath, is pretty important. Textured ZnO:Al transparent oxide layer of high haze is commonly used in Si thin film solar cells. In this paper, novel deposition method for aluminum doped zinc oxide (ZnO:Al) on glass substrates is presented to improve the haze property. The broccoli structure of ZnO:Al layer was formed on chemically etched glass substrates, which showed high haze value on a wide wavelength range.The etching condition of the glass substrates can change not only the haze values of the ZnO:Al of in-situ growth but alsothe electrical and optical properties of the deposited ZnO:Al films.The etching mechanism of the glass substrate affecting on the surface morphology of the glass will be discussed, which resulted in variation of texture of ZnO:Al layer. The optical properties of substrate morphology were also analyzed with EDS and FTIR results. As a result, the high haze value of 85.4% was obtained in the wavelength range of 300 nm to 1100 nm. Furthermore, low sheet resistance of about 5~18 ohm/sq was achieved for different surface morphologies of the ZnO:Al films.

  • PDF

고밀도 알루미늄 박막 코팅과 특성 분석

  • Yang, Ji-Hun;Jeong, Jae-In;Jang, Seung-Hyeon;Park, Hye-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.45-45
    • /
    • 2011
  • 알루미늄과 그 합금은 내부식성(corrosion resistance)이 좋고, 밀도가 낮아 높은 연료소비 효율을 필요로 하는 항공기와 자동차 같은 운송수단의 내-외장 소재로 사용되고 있다. 또한 알루미늄의 높은 내부식성을 이용하여 철강소재의 부식을 방지하는 보호막으로도 폭 넓게 사용된다. 물리기상증착(physical vapor deposition)으로 알루미늄을 코팅하면 박막 성장 초기단계에서 핵(nucleus)을 형성하고, 형성된 핵을 중심으로 주상 구조(columnar structure)로 박막이 성장하는 것이 일반적으로 알려진 방식이다. 주상 구조의 알루미늄 박막은 주상정과 주상정 사이에 필연적으로 공극(pore)이 존재하게 되어 부식을 일으키는 물질이 박막으로 침투하게 되고, 부식 물질과 모재가 반응하여 공식(pitting corrosion)이 발생한다. 본 연구에서는 스퍼터링(magnetron sputtering)을 이용하여 치밀한 조직을 갖는 알루미늄 박막을 코팅할 수 있는 공정을 개발하고, 치밀한 알루미늄 조직이 내부식성에 어떠한 영향을 미치는지 평가하였다. 기판은 냉연강판(cold rolled steel sheet)이 사용되었으며, 알루미늄 타겟의 순도는 99.999%, 크기는 직경 4"이었다. 냉연강판은 진공용기(vacuum chamber)에 장착하기 전에 계면활성제를 이용하여 표면에 존재하는 기름성분을 제거하였으며, 진공용기에 장착한 후에는 아르곤 가스를 이용하여 발생시킨 글로우 방전으로 표면에 존재하는 산화물을 제거하였다. 알루미늄 박막의 조직에 영향을 미치는 공정변수를 확인하기 위해서 스퍼터링 파워, 공정 온도, 공정 압력, 외부 자기장 세기 등의 공정 조건을 변화시켜 코팅을 실시하였다. 실험을 통해서 얻어진 최적 조건으로 알루미늄을 코팅할 경우, 알루미늄 bulk의 밀도와 비교하여 약 94.7%의 밀도를 갖는 알루미늄 박막을 코팅할 수 있었다. 알루미늄 박막이 약 3 ${\mu}$m의 두께로 코팅된 냉연강판의 내부식성 평가(salt spray test, 5% NaCl) 결과, 평가를 시작한 후 72시간 후에도 적청이 발생하지 않았다.

  • PDF