• 제목/요약/키워드: Aluminum salts

검색결과 46건 처리시간 0.023초

Replacements for Chromate Pigments in Anticorrosion Primers for Aluminum Alloys

  • Yin, Zhangzhang;Ooij, Wim van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.206-210
    • /
    • 2007
  • Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Chromate is currently widely used in the aerospace industry as the corrosion inhibitor for these alloys. However, chromate needs to be replaced due to its strong carcinogenicity. In this study, an extensive pigment screening has been performed to find replacements for chromates. Different categories of inhibitors were evaluated by immersion tests, DC polarization tests and other methods. Phosphates, zinc salts, cerium salts, vanadates and benzotriazole were found to be effective inhibitors for AA7075. Among those inhibitors, zinc phosphate was found to be the most effective in our novel, silane-based, one-step aqueous primer system. The performance of this primer is comparable to that of currently used chromate primers in accelerated corrosion tests, while it is completely chromate-free and its VOC is about 80% less than that of current primers. Studies by SEM/EDS showed that the unique structure of the superprimer accounts for the strong anti-corrosion performance of the zinc phosphate pigment. The self-assembled stratified double-layer structure of the superprimer is characterized by a less-penetrable hydrophobic layer at the top and a hydrophilic layer accommodating the inhibitors underneath. The top layer functions as the physical barrier against water ingress, while the lower layer functions as a reservoirfor the inhibitor, which is leached out only if the coating is damaged by a scratch or scribe. The presence of a silane in the primer further improves the adhesion and anti-corrosion performance of the primer.

알루미늄염에 의한 인 제거 시 pH와 초기 인 농도의 영향 (Effect of pH and Initial Phosphorus Concentration on Phosphorus Removal by Aluminum Salts)

  • 박정원;곽효은;민소진;정형근;박병규
    • 상하수도학회지
    • /
    • 제30권2호
    • /
    • pp.123-130
    • /
    • 2016
  • Phosphorus (P) removal by aluminum sulfate solution was investigated with varying pH and initial P concentrations. P removal was the highest at around pH 6. The pH range where P removal occurred was slightly wider at higher initial P concentrations. Compared to theoretical calculations, it was confirmed that $AlPO_4$ precipitation was the main reason for P removal at low pH. At high pH, where there should be no $AlPO_4$ precipitates, the P removal by adsorption of amorphous $Al(OH)_3$ precipitates was experimentally observed. The P removal by adding amorphous $Al(OH)_3$ precipitates prepared before the adsorption experiments, however, was lower than that by injecting aluminum sulfate solution because the prepared precipitates became larger, leading to less specific surface area available for adsorption. Ions other than sulfate had little influence on P removal.

고온 축열 시스템의 개발에 관한 연구 (A System Development of Thermal Energy Storage at High Temperatures)

  • 홍성안;박원훈;최형준
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.13-21
    • /
    • 1988
  • Heat transfer phenomena in a high-temperature heat storage unit were investigated using molten salts. Carbonate salt, an equimolar mixture of $Li_2CO_3$ and $K_2CO_3$, which melts at $505^{\circ}C$ with a latent heat of 82 cal/g, was selected as the most promising latent heat storage material based on its low cost and excellent thermophysical properties at moderately high temperatures. It was also found that nitrate salts were good candidates of sensible heat storage materials. For the carbonate salt to be utilized commercially, however, several means of enhancing thermal recovery must be explored by promoting heat conduction through the solid salt formed during the heat discharge period. These would be achieved by the additions of aluminum screens and wool, and stainless fins. Finally, experimental results of moving boundary of phase change were well compared with predictied values obtained from the approximate solution.

  • PDF

국산 명반석과 황산염으로부터 고순도의 미세한 알루미나의 제조 및 특성에 관한 연구 (Fabrication and Characterization of High Purity of Fine Alumina from Korean Alunite and Sulfate Salts)

  • 변수일;이수영;김종희
    • 한국세라믹학회지
    • /
    • 제16권1호
    • /
    • pp.13-20
    • /
    • 1979
  • High purity alumina has been extracted form low grade Korean alunite. Alunite ore was treated by 15% $NH_4OH$ solution, followed by 10% $H_2SO_4$ leaching and metallic impurities such as Fe and Ti were removed by solvent extraction method. Alumina prepared by the extraction process was 99.9% in purity. Hot Petroleum Drying Method has been employed for the preparation of uniformly fine alumina powder, using chemical reagent aluminum sulfate and ammonium aluminum sulfate extrated from Korea alunite. The sinterability of alumina powder prepared by Hot Petroleum Drying Method was shown to be improved in comparison with the one treated by other methods such as ball milling method, but dry pressing was difficult due to the agglomeration of calcined powder. The best slip of alumina powder prepared by Hot Petroleum Drying Method contained a lower soild content than the one treated by other methods. The alumina body formed by soild and drain casting with the former alumina powder showed a higher sintered density.

  • PDF

글리옥살을 이용한 마직물의 무포름알데히드 방추가공(제 1보)-촉매의 영향 (Nonformaldehyde Anti-crease Finish of Ramie with Glyoxal (Part I))

  • 오경화;홍경화
    • 한국의류학회지
    • /
    • 제22권8호
    • /
    • pp.1060-1068
    • /
    • 1998
  • The effects of various catalysts and softners on the anti-crease finish of ramie with glyoxal were investigated. A number of metal salts commonly used as Lewis acid catalysts in DP finishing of cotton with formaldehyde and N-methylol agents were screened for glyoxal treatment of ramie fabric. Various organic and inorganic acids were mixed with Lewis acid catalyst as co-catalysts to improve catalytic activity. As a result, the combination of aluminum sulfate and citric acid was proven highly effective in catalyzing the crosslinking of ramie cellulose by glyoxal under lower curing temperature. With a mixed catalyst, performance properties, such as whiteness and tearing strength as well as wrinkle recovery of treated ramie fabric were improved as compared with that treated with aluminum sulfate alone. Additional improvement of tearing strength and wrinkle recovery was achieved by applying silicons softner in the treatment bath.

  • PDF

황산망간을 이용한 분홍색 착색료의 제조연구 (Studies on the Preparation of Pink Stain using Manganese Sulfate)

  • 이준선
    • 한국세라믹학회지
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 1974
  • Preparation of pink color stains was studied using manganese sulfate and aluminum salts. As the results obtained in this study, the composition range of the stains showing favorable pink celor was as follows: MnO.0.5-0.8P2O5.1.70-3.00 Al2O3 Furthermore, as the results of applied tests for glazes and the color measured by Color Eye, the usefulness of the stains was approved.

  • PDF

LiF-NdF3-Nd2O3 용융염에서 질화물계 세라믹재료의 고온안정성 (High Temperature Stability of Nitride Ceramic Materials in LiF-NdF3-Nd2O3 Molten Salts System)

  • 권숙철;이영준;류홍열;이고기;조성구;이종현
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.694-702
    • /
    • 2015
  • Nd-Fe-B permanent magnets have been used in a wide variety of applications because of their high magnetic flux density. So, demand for neodymium has been increasing in worldwide. In this study, an electrowinning process was performed in $LiF-NdF_3-Nd_2O_3$ high temperature molten salts. However, a corrosion resistant material for use in the molten salt must be found for stable operation because of the harsh corrosion environment of the electrowinning process. Therefore, for this paper, boron nitride(BN), aluminum nitride(AlN), and silicon nitride($Si_3N_4$) were selected as protective and structural materials in the high temperature electrolyte. To investigate the characteristics of BN, AlN, and $Si_3N_4$, in molten salts, materials were immersed in the molten salts for 24, 72, 120, and 192 hours. Also, surface condition and stability were investigated by SEM and EDS and corrosion products were calculated by HSC chemistry. As a result, among BN, AlN, and $Si_3N_4$, AlN was found to show the best protective material properties.

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

Immobilization of sodium-salt wastes containing simulated 137Cs by volcanic ash-based ceramics with different Si/Al molar ratios

  • Sun, Xiao-Wen;Liu, Li-Ke;Chen, Song
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3952-3965
    • /
    • 2021
  • In this study, volcanic ash was used as raw material to prepare waste forms with different silicon/aluminum (Si/Al) molar ratios to immobilize sodium-salt waste (SSW) containing simulated 137Cs. Effects of Si/Al molar ratios (3:1 and 2:1) and sodium salts on sintering behavior of waste forms and immobilization mechanism of Cs+ were investigated. Results indicated that the main mineral phase of sintered waste-form matrixes was albite, and the formation of major phases was found to depend on Si/Al molar ratios. Si/Al molar ratio of 2 was favorable for the formation of pollucite, and the formation and crystallization of mineral phases were also decided based on physicochemical characteristics of sodium salts. Furthermore, product consistency test results indicated that the immobilization of Cs+ was related to Si/Al molar ratio, types of sodium salts, and glassy phase. Waste forms with Si/Al molar ratio of 2 exhibited better ability to immobilize Cs+, whereas the influence of sodium salts and glassy phases on the immobilization of SSW showed more complicated relationship. In waste forms with Si/Al molar ratio of 2, Cs+ leaching concentrations of samples containing Na2B4O7·10H2O and NaOH were low. Na2B4O7·10H2O easily transformed into liquid phase during sintering to consequently achieve low temperature liquid-phase sintering, which is beneficial to avoid the volatilization of Cs+ at high temperature. Results clearly reveal that waste forms with Si/Al molar ratio of 2 and containing Na2B4O7·10H2O show excellent immobilization of Cs+.

베시클 생성에 미치는 Phosphatidylcholine과 알루미늄 염 농도의 영향에 관한 TEM 관찰 (Observation of Effects of Phosphatidylcholine and Al Salts Concentration on the Formation of Vesicles by TEM)

  • 정종재;김창현;이병교;이해욱
    • 대한화학회지
    • /
    • 제40권3호
    • /
    • pp.173-179
    • /
    • 1996
  • 투과전자현민경(TEM)을 사용하여 실험 변수에 따른 베시클의 크기와 베시클간의 응집을 관찰하였다. 조절된 변수로는 (a) 반응온도의 변화, (b) Phosphatidylcholine 농도의 변화, (c) Phosphatidylcholine의 농도(0.39mM)를 일정하게 유지했을 때 알루미늄 이온의 농도변화:0.01, 0.05, 0.1, 0.2 M, (d) $Al(NO_3)_3{\cdot}9H_2O$에 Phosphatidylcholine을 1 wt%로 고정하여 이들의 농도 증가에 따른 전체농도의 변화 등을 실험한 결과 베시클크기와 베시클간의 응집이 관찰되었다. 반응온도가 증가할수록 Phosphatidylcholine 농도가 증가할수록 베시클의 크기가 감소되었다. 알루미늄 이온농도가 0.2M일 때 입자간의 응집과 합체로 비정상 베시클 성장이 관찰되었다. $Al(NO_3)_3{\cdot}9H_2O$에 대한 Phosphatidylcholine비가 1 wt%일 때 최적의 베시클 크기와 균일한 분포를 얻을 수 있었다.

  • PDF