• Title/Summary/Keyword: Aluminum plate

Search Result 535, Processing Time 0.027 seconds

A STUDY ON THE SPATIAL LIGHT MODULATOR WITH PISTON PLUS TILT MODE OPERATION USING SURFACE MICROMACHINING TECHNOLOGY (표면 미세 가공 기술을 이용한 상하운동 및 회전운동을 하는 광 변조기에 관한 연구)

  • Jeong, Seok-Hwan;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2000
  • In this paper, using surface micromachining technology with thick photoresist and aluminum, an SLM(Spatial Light Modulator), which is applied to the fields of adaptive optics and pattern recognition system, was fabricated and the electromechanical properties of the fabricated micro SLM are measured. In order to maximize fill-factor and remove mechanical coupling between micro SLM actuators, the micro SLM is composed of three aluminum layers so that spring structure and upper electrode are placed beneath the mirror plate, and $10\times10$ each mirror plate is individually actuated. Also, the micro SLM was designed to be able to modulate phase and amplitude of incoming light in order to have a continuity of phase modulation of incoming light. In the case of amplitude and phase modulation, maximum vertical displacement is 4$\mum$, and maximum angular displacement is $\pm4.6^{\corc}$ respectively. The height difference of the fabricated mirror plate was able to be reduced to 1100A with mirror plate planarization method using negative photoresist(AZ5214). The electromechanical properties of the fabricated micro SLM were measured with the optical measurement system using He-Ne laser and PSD(position sensitive device).

  • PDF

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

A study on the dynamic characteristics of CFRP PLATE by modal analysis method (모우드 해석법에 의한 CFRP PLATE의 동특성에 관한 연구)

  • 한응교;오재응;방태규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • Using modal analysis method this paper examines the dynamic characteristics of composite material closely. Composite material is superior to conventional material in view of mechanical properties. So the laminate of CFRPis compared with ALPlate. As the results, the overall vibration level of CFRP is lower than that of AL Plate and is low when fiber direction is parallel to the fixed point. Also, the natural frequency of CFRP is situated in low frequency than that of AL.

  • PDF

Heat Transfer from a Porous Heat Sink by Air Jet Impingement (충돌공기제트에서의 다공성 방열기의 열전달 특성)

  • 백진욱;김서영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • Experiment were carried out to investigate the heat transfer characteristics of an aluminum foam block as a porous heat sink on a heat source by a vertical air jet impingement that can be applied for electronics cooling. The performance of the aluminum foam heat sink was evaluated by the convective heat transfer coefficient on the heat source. At a fixed porosity, pore density ($\beta$) of the foam and Reynolds number Re were varied in the range of $\beta$a=10, 20, 40 PPI(Pore Per Inch) and $850\leqRe\leq25000$. A nozzle diameter and the nozzle-to-plate spacing were also varied. It was found that the convective heat transfer was enhanced by the aluminum foam heat sink with lower pore density due to relatively intensified flow through the foam block. The aluminum foam block with much reduced weight shows slightly better performance with larger Nusselt number, compared with the convectional heat sink.

  • PDF

Effect of Machining on Hard Anodizing Surface of Aluminum (절삭가공이 알루미늄 경질 아노다이징 피막에 미치는 영향)

  • Kim, Su-Jin;Mun, Jeongil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-92
    • /
    • 2022
  • The Al3003 aluminum plate was cut by grinding, milling, sawing, and shearing, and the hard-anodizing surface of the material was investigated. Large burrs were formed during grinding and milling. The brittle anodized film split and migrated along the deformed aluminum surface. During shearing, the hard-anodized film on the blade entry surface cracks and slides along the deforming aluminum. The cutting heat increased the ductility of the aluminum and further promoted burr formation. The oil-based coolant suppressed burrs and prevented chips from sticking to the endmill. It is better to avoid the high cutting speed and slow material feed rate conditions, which increase the cutting temperature and burr in the band saw.

A Study on Development of Automobile Interior Parts through Al-Insert Injection Moulding (Al-Insert 사출성형을 이용한 자동차 내장재 부품 개발에 관한 연구)

  • Lho T.J.;Kim J.Y.;Kang D.J.;Kim J.H.;Kim G.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.170-175
    • /
    • 2005
  • Generally, Aluminum is superior to durability, light, and characteristics of the material are embossed luminant. So, these characteristics of aluminum will be used automobile interior parts by aluminum injection moulding. Especially, The external of Aluminum plate is engraved differing pattern by roller working. This working can use any longer and be seen gracefully. This is the reason why aluminum insert moulding is used. This feature of research can be characterized by simple process to customize aluminum sheet of blanking and forming process with internal parts of configuration if products are injected by aluminum sheet. Besides, to analysis completed Automobile interior parts to be concerned volumetric shrinkage, best gate location, fill time analysis and so on through the mold-flow before the aluminum insert moulding is worked.

  • PDF

Study of Au-PTFE/Al Metallic bipolar plate for PEMFC (고분자 전해질형 연료전지용 Au-PTFE/Al 금속분리판 연구)

  • Yoo, Seung-Eul;Kim, Myong-Hwan;Goo, Young-Mo
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.75-82
    • /
    • 2007
  • Aluminum was used as metallic bipolar plate material to reduce a stack weight. The functional materials such as conductive material, Au and nonconductive material, PTFE [polytetrafluoroethylene] were coated on the bipolar plate to enhance electrical contact and corrosion prevention in PEMFC. The active area of bipolar plate is divided into the top layer part that electric current mainly passes, and the bottom layer part that gas and water pass. The bottom layer part in the flow channel needs not to have electrical conductivity because it doesn't pass electric current directly. In this reason, Au on the top layer and PTFE on the bottom layer were coated to apply high electrical conductivity and/or good corrosion resistance. Although the single cell performance using Au-PTFE/Al bipolar plate was shown 78% in comparison with that of graphite, specific power of Au-PTFE/Al bipolar plate(0.4 W/g) was twice as much as graphite bipolar plate.

  • PDF

A Study on the Effect of Metal Plate Position Design on Mechanical Strength during Lap Joint Dissimilar Friction Stir Welding Process of Aluminum Alloys (알루미늄 합금의 이종겹치기 마찰교반용접시 판재의 위치설계가 기계적 강도에 미치는 영향에 관한 연구)

  • Park, Hee-Sang;Ko, Jun-Bin;Choi, Won-Doo;Choi, Man-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.66-72
    • /
    • 2010
  • Recently, the use of means of transportation of the lightweight aluminum to temper the trend is increasing. More efficient use of lightweight aluminum material to Friction stir welding has been widely attempted. Types of welding tools at the right screw to rotate anti-clockwise direction, when the tensile stress exerted on the location of the top plate to the left in the direction of the welding process to the installation was able to obtain high tensile strength. A5052 to the top of the left in the direction of the welding process to install and, when you installed the right under the A6061 was not easily come up to the top of the A5052. Conversely, at the bottom left to install on top of the A6061 and A5052 have been installed at the bottom of the upper area of the A6061 and A5052 intrude easily form the shape of the hill you can see that it was formed.

A Study of Resistance of Fatigue Crack in Aluminum Alloy Plate Bonded with FRP (FRP 본딩한 알루미늄 판재의 피로균열 저항성에 관한 연구)

  • 윤한기;오세욱;박원조;허정원
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.117-126
    • /
    • 1994
  • APAL (Aramid Patched ALuminum alloy) was manufactured, which was a material that was consisting of a A12024-T3 aluminum alloy plate bonded to single-side of it with aramid/epoxy laminates. The aramid/epoxy laminates were bonded to it in condition of 1, 2 ply and fiber orientation of .+-.45, 0.deg./90.deg. Fatigue crack propagation tests were performed at stress ratio R-0.2, 0.5 with Al 2024-T3, APAL 45-1P, APAL 0/90-1P, APAL 45-2P, APAL 0/90-2P specimens to examine behavior of retardation in fatigue crack propagation. All the APAL specimens showed superior fatigue crack resistance. Number of cycle spended for crack to propagate from $a_{M}$=37 to $a_{M}$=65 mm in case of APAL 0/90-2P specimen was half that of Al 2024-T3 specimen. Fatigue crack propagation rate of APAL 0/90 specimens were retarded more compared to APAL 45 specimens and the amounts of retardation at R=0.5 were larger than that at R=0.2. It was found that the retardation in fatigue crack propagation was caused by intact fibers in the wake of crack.ack.

  • PDF

A Study on The Change of Insert Clamping Force Influence According to the Surface Treatment of Armor Aluminum Alloy Plate (장갑판재의 표면처리에 따른 인서트 체결력 변화 연구)

  • Hwang, Bu Il;Yang, Sang Hun;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.787-791
    • /
    • 2015
  • In some cases which are unable to replace the inserts when the depot maintenance or performance improvement of armored vehicles are carried out could have a risk of declining clamping forces by re-processing chromate. The change in the clamping forces of inserts has been investigated by applying a chromate process to hold the insert on the aluminum plate of the armored vehicle in this paper. In order to identify the effect of types and surface treatment, the breaking strength has been measured by the equivalent test item to the actual conditions. These tests would contribute the establishment of the armored vehicle production process.