• Title/Summary/Keyword: Aluminum particles

Search Result 382, Processing Time 0.027 seconds

Application of nanofiltration membrane in the recovery of aluminum from alkaline sludge solutions

  • Cheng, Wen Po;Chi, Fung Hwa;Yu, Ruey Fang;Tian, Dun Ren
    • Advances in environmental research
    • /
    • v.5 no.2
    • /
    • pp.141-151
    • /
    • 2016
  • Large amounts of aluminum hydroxide ($Al(OH)_3$) exist in water purification sludge (WPS) because of the added aluminum coagulant in water treatment process. Notably, $Al(OH)_3$ is an amphoteric compound, can be dissolved in its basic condition using sodium hydroxide to form aluminate ions ($Al(OH)_4{^-}$). However, in a process in which pH is increasing, the humid acid can be dissolved easily from WPS and will inhibit the recovery and reuse of the dissolved aluminate ions. This study attempts to fix this problem by a novel approach to separate $Al(OH)_4{^-}$ ions using nanofiltration (NF) technology. Sludge impurity in a alkaline solution is retained by the NF membrane, such that the process recovers $Al(OH)_4{^-}$ ions, and significantly decreases the organic matter or heavy metal impurities in the permeate solution. The $Al(OH)_4{^-}$ ion is an alkaline substance. Experimental results confirm that a recovered coagulant of $Al(OH)_4{^-}$ ion can effectively remove kaolin particles from slightly acidic synthetic raw water.

Repair of Mold by Cold Spray Deposition and Mechanical Machining (저온 분사 적층과 절삭가공을 이용한 금형보수 사례연구)

  • Kang Hyuk-Jin;Jung Woo-Gyun;Chu Won-Sik;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.101-107
    • /
    • 2006
  • Cold gas dynamic spray or cold spray is a novel manufacturing method for coatings. Cold spray is a high rate and direct material deposition process that utilizes the kinetic energy of particles sprayed at high velocity (300-1,200m/s). In this research, a technique to repair the damaged mold by cold spray deposition and mechanical machining was proposed. An aluminum 6061 mold with three-dimensional surface was fabricated, intentionally damaged and material-added by cold spray, and its original geometry was re-obtained successfully by Computer Numerical Control (CNC) machining. To investigate deformation of material caused by cold spray, deposition was conducted on thin aluminum plates ($100mm{\times}100mm{\times}3mm$). The average deformation of the plates was $205{\sim}290{\mu}m$ by Coordinate Measurement Machine (CMM). In addition, the cross section of deposited layer was analyzed by scanning electron microscopy (SEM). To compare variation of hardness, Vickers hardness was measured by micro-hardness tester.

Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment (해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

High Strain Rate Deformation Behavior of 5083 Aluminum Alloy Prepared via Equal Channel Angular Extrusion (ECAE 전단 가공된 5083 알루미늄 합금의 고변형률 변형거동)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.397-405
    • /
    • 2009
  • The high strain rate deformation behavior of ultra-fine grained 5083 aluminum alloys prepared via equal channel angular (ECA) extrusion was investigated in this study. The microstructure of ECA extruded specimens consisted of ultra-fine grains, and contained a considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. According to the dynamic torsion test results, the maximum shear stress and fracture shear strain of the route A (no rotation) specimen were lower than those of route C ($180^{\circ}$ rotation) specimen since that adiabatic shear bands of $100{\mu}m$ in width were formed in the route A specimen. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity associated with ECA operations.

Physical Wounding for the Enhancement of Agrobacterium-Mediated Transformation of Flammulina velutipes Mycelium (물리적 상해를 통한 Agrobacterium 이용 팽이균사체의 형질전환효율 증대)

  • Duong, Van Thanh;Shin, Dong-Il;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.141-146
    • /
    • 2010
  • In this study, Agrobacterium-mediated transformation was tested to the mycelium culture of Flamulina velutipes which is very popular as an edible mushroom in Korea. Particularly, aluminum oxide particles were used to generate wounds in F. velutipes mycelia via vigorous shaking prior to agro-infiltration. The result showed that transformants resistant to hygromycin could be obtained only from the mycelia with physical wounds. Gene transfer was verified by genomic DNA PCR. This study suggested a convenient tool to improve Agrobacterium-mediated transformation of F. velutipes.

The study of detonation of laser-ablated aluminum by high power laser (고 에너지 레이저를 통한 laser-ablated 알루미늄의 detonation 현상 연구)

  • Kim, Chang-Hwan;Yoh, Jack. J
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.425-429
    • /
    • 2011
  • The development of metal plasma generated by high laser irradiance and its effect on the surrounding air using shadowgraph images after laser pulse termination are studied; hence the formation of laser supported detonation and combustion processes has been investigated. The core of the paper is in detecting chemical reaction using X-Ray Diffraction (XRD) between ablated aluminum plasma and oxygen from air by inducing high power laser pulse (>1000 mJ/pulse) and conduct a quantitative comparison of chemically reactive laser initiated waves with the classical detonation of exploding aluminum (dust) cloud in air. This study may suggest a new approach of initiating detonation from metal sample in its bulk form without the need of mixing nano-particles with oxygen for initiation.

  • PDF

Utilization of pollen grains for the expression of epidermal growth factor (Epidermal growth factor 발현을 위한 화분립의 이용)

  • Choi, Byung-Jin;Park, Hee-Sung
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.460-462
    • /
    • 2008
  • Pollens grains collected from fully dehisced lily (Lilium longiflorum) anthers were given wounds by means of shaking in the presence of aluminum oxide particles. They were transformed by infiltration with Agrobacterium cells harboring a synthetic DNA encoding signal peptide-fused epidermal growth factor (EGF). After incubation for 24 hr in vitro, the pollen culture showed that EGF mRNAs and proteins were successfully expressed in the analysis of cDNA blot hybridization and immuno-blotting.

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

Effect of Primary Si size and Residual Stress on the Wear Properties of B.390 Al Alloys (B.390 알루미늄 합금의 마모특성에 미치는 초정Si 입자크기와 잔류응력의 영향)

  • Kim, Heon-Joo;Kim, Sung-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.20-29
    • /
    • 2006
  • Wear behaviour of B.390 aluminum alloy with different particle sizes of primary Si against a SM45C counterface was studied as a function of wear load and sliding velocity, using pin-on-disk apparatus under dry condition. The wear rate of specimen with fine primary Si particles showed increased wear resistance at high wear load, on the other side wear resistance of coarse primary Si particle size was improved at low wear load. As the compressive residual stress in the matrix increased remarkably by liquid nitrogen(LN) treatment, wear resistance of the LN treated specimen was more excellent than that of T6 treated specimen.

On the Wear Properties of the Alumina Short Fiber and Particle Reinforced Aluminium Bronze Alloy Composite (알루미나 단섬유 및 입자강화 알루미늄 청동기지 복합재의 마모특성)

  • 이상로;허무영
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 1994
  • In order to investigate the effect of the ceramic reinforcements on the wear properties of aluminum bronze composites, Cu-8wt%Al aluminum bronze alloys reinforced with the Saffil alumina short fiber were produced by the powder metallurgical method and tested by a pin-ondisc wear testing machine. The wear surfaces of the pin specimens and discs, wear debris, and the cross sections of the wear specimens were observed by SEM. The wear mechanism according to various wear conditions and the change of microstructure in the composites were also discussed. In the results, the reinforcement of the composites with alumina short fiber was very effective at the higher applied load over 10N. The material transportation to the counter disc was observed in the alloy specimens without reinforcements. However, the composites reinforced with ceramic particles and fibers showed the resistance against the material transportation.