• Title/Summary/Keyword: Aluminum particle

Search Result 370, Processing Time 0.029 seconds

Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity (변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링)

  • Suh, Yeong-Sung;Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.745-751
    • /
    • 2011
  • This study proposes finite element modeling of dislocation punching at cooling after consolidation in order to calculate the strength of particle-reinforced aluminum composites. The Taylor dislocation model combined with strain gradient plasticity around the reinforced particle is adopted to take into account the size-dependency of different volume fractions of the particle. The strain gradients were obtained from the equivalent plastic strain calculated during the cooling of the spherical unit cell, when the dislocation punching due to CTE (Coefficient of Thermal Expansion) mismatch is activated. The enhanced yield stress was observed by including the strain gradients, in an average sense, over the punched zone. The tensile strength of the SiCp/Al 356-T6 composite was predicted through the finite element analysis of an axisymmetric unit cell for various sizes and volume fractions of the particle. The predicted strengths were found to be in good agreement with the experimental data. Further, the particle-size dependency was clearly established.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

The Fabrication of High Strength 7XXX Aluminum Alloy Powders by Centrifugal Disc Atomization (원심분무법에 의한 고강도 7XXX 알루미늄 합금 분말의 제조)

  • Lee, Tae-Hang;Im, Seong-Moo;Cho, Sung-Suk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.528-537
    • /
    • 1990
  • 7XXX aluminum alloy powders produced by the self-manufactured rotating disc atomizer were investigated to determine the influence of the atomization parameters on the particle size distributions in air atmosphere. The particle size distributions are almost always bimodal with the dominant mode on the large particle size. Average powder size of 7XXX aluminum alloy is $74/{\mu}m~125/{\mu}m$ when melt is poured with the rate of 9g /sec at 730$^{\circ}C$ on a rotating disc of 30㎜ diameter at 6300rad/sec. The mass of finer particle increased when disc diameter, angular velocity, pouring temperature increased and pouring rate decreased. The powder shapes of bimodal change from acicular to tear-drop and from tear-drop to ligament with increasing powder size. Powder shape was determined by the atomization mechanism and oxidation in liquid state. Microstructure of powders appeared to be cell and cellular dendrite. The SDAS of Al-7.9wt%Zn-2.4wt%Mg-1.5wt%Cu-0.9wt%Ni Powders is $0.8{\mu}m~1.0{\mu}m$ for the powders of $size+44{\mu}m~53{\mu}m$ and $1.6{\mu}m∼1.8{\mu}m$ for the powders of $size+105{\mu}m~125{\mu}m$, repectively.

  • PDF

Explosion Properties of Nano and Micro-sized Aluminium Particles (나노 및 마이크로 입자 알루미늄의 폭발 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.20-25
    • /
    • 2014
  • Explosion characteristics of micro-sized aluminum dusts had been studied by many researchers, but the research of nano-sized aluminum dusts were very insufficient. In this study, an experimental investigation was carried out on the influences of nano and micro-sized aluminum dusts (70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) on dust explosion properties of aluminum particles by using 20 L explosion apparatus. With decreasing of particle size in suspended aluminum dusts, the LEC (lower explosion concentration) of nano-sized aluminum is lower than that of micro-sized aluminum. The particle size change of nano-sized aluminum dusts seems no obvious explosion differences than that of micro-sized aluminum dusts. From the observation of nano-sized aluminum particles by TEM (Transmission Electron Microscopy), it is estimated that increase of particles aggregation may have effects on the explosion characteristics of aluminum nanopowders.

Preparation of Aluminum Hydroxide by Processing of Aluminum Dross

  • Park, Hyungkyu;Lee, Hooin;Kim, Joonsoo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.202-208
    • /
    • 2001
  • Aluminum dross should be recycled in consideration of characteristics of the dross and its reutilization after processing. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing aluminum hydroxide. Sample dross was classified according to its size. The dross smaller than 1mm was leached with sodium hydroxide solution to extract the remaining aluminum from the dross into the solution, and then aluminum hydroxide precipitate was recovered from the leach liquor. Purity of the obtained aluminum hydroxide was above 98 percent, and particle size of the sample was in range of 3-39${\mu}{\textrm}{m}$. From the result, it was suggested that this process could be applicable to recycling of aluminum dross.

  • PDF

Effects of Ca on the Refinement of Microstructure in Aluminum B390 Alloy (알루미늄 B390합금의 조직미세화에 미치는 Ca의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.257-264
    • /
    • 2002
  • Effects of Ca content on the refinement of primary Si of Aluminum B390 alloy have been examined. Ca was found to have an effect on the refinement of primary Si particle. Primary Si particle size has been refined as Ca content of the melts decreased and cooling rate increased. A control of Ca content by the addition of $CuCl_2$ to the melt was the most efficient in the refinement of primary Si particles. The minimum size of primary Si particles in this study was $15.0\;{\mu}m$ when a residual content of Ca element in the alloy was 5ppm, Primary Si particle size was refined as primary Si crystallization temperature increased, which was attributed to the decrease of Ca content in the melts.

Finite Element Analysis of Deformation Behavior During ECAP for an Aluminum Alloy Composite Model containing a SiC Particle and Porosities (강화상과 기공이 포함된 금속기지 복합재 모델의 ECAP 거동에 대한 유한요소해석)

  • Lee, Sung-Chul;Han, Sang-Yul;Kim, Ki-Tae;Hwang, Sang-Moo;Huh, Lyun-Min;Chung, Hyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.739-746
    • /
    • 2004
  • The plastic deformation behavior of an aluminum alloy containing a particle and porosities was investigated at room temperature during equal channel angular pressing (ECAP). Finite element analysis by using ABAQUS shows that ECAP is a useful tool for eliminating residual porosity in the specimen, and more effective under friction condition. The simulation, however, shows considerably low density distributions for matrix near a particle at which many defects may occur during severe deformation. Finite element results of effective strains and deformed shapes for matrix with a particle were compared with theoretical calculations under simple shear stress. Also, based on the distribution of the maximum principal stress in the specimen, Weibull fracture probability was obtained for particle sizes and particle-coating layer materials. The probability was useful to predict the trend of more susceptible failure of a brittle coating layer than a particle without an interphase in metal matrix composites.

Finite Element Analysis for Behavior of Aluminum Alloy Embedding a Particle under Equal Channel Angular Pressing (ECAP 공정시 강화상이 첨가된 금속기지 거동에 대한 유한요소해석)

  • Lee, S.C.;Ha, S.R.;Kim, K.T.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1157-1162
    • /
    • 2003
  • Behavior of aluminum alloy embedding a particle was investigated at room temperature under ECAP. Finite element analysis by using ABAQUS shows that ECAP is a useful tool for eliminating residual porosity in the specimen, and much more effective under friction condition. The simulation, however, shows considerably low density distributions for matrix near a particle at which rich defects may occur during severe deformation. Finite element results of effective strains and deformed shapes for matrix with a particle were compared with theoretical calculations under simple shear stress. Also, based on the distribution of the maximum principal stress in the specimen, Weibull fracture probability was obtained for particle sizes and particle-coating layer materials. The probability was useful to predict the trend of more susceptible failure of a brittle coating layer than a particle without an interphase in metal matrix composites.

  • PDF

Evaluation of Treatment Efficiency using non-Control Indicator in Drinking Water Treatment Process (미규제 수질인자를 이용한 정수공정의 효율성 평가)

  • Lee Jae-Young;Kang Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.153-159
    • /
    • 2006
  • The discharges of time, technology and finance was increased and it was difficult to use water resources effectively by serious water pollutions. Thus the main aim of this work was focused on effectiveness of water treatment process using non-controlled indicators such as UV absorbance($E_{260}$) and particle counts that provided analytical results with simple and rapid. The soluble aluminum was increased by the increase of aluminum doses for turbidity removals It means that the water quality was not controlled by only turbidity monitoring cause maximum turbidity removal did not guarantee minimum residual aluminum in an aluminum-based coagulation. E removal efficiency appeared to be the promising indicator for monitoring the effectiveness of the water quality process such as coagulation and nanofiltration membranes for arsenic(V). On the basis of the particle monitoring, it was also found that the particle counts could be used very useful for changing the coagulants in real water treatments.

A Study on the Measurement of the Concentration and the Size Distribution of Inclusions in the Molten Aluminum (용융 알루미늄내에서 개재물의 크기분포 및 농도측정에 관한 연구)

  • An, Jeong;Moon, Kwang-Ho;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.62-74
    • /
    • 1994
  • The concentration and particle size distribution of non-metallic inclusions which suspended in the molten aluminum at $700^{\circ}C$ were measured by using LiMCA apparatus. The result revealed that the number of inclusions increased with increasing the applied current or decreasing the orifice diameter, while decreased with increasing the purity of aluminum. And also, it was found that the number of inclusions increased with increasing the amount of boron added to molten aluminum. This was found to be attributed to the formation of the inclusions of TiB and $V_3B_2$. It was investigated that the average concentration of inclusions in a constant volume of 20ml of molten aluminum was increased in the order of pure molten aluminum, molten aluminum containing 20ppm of boron and molten aluminum used repeatly in the experimental casting in this study.

  • PDF