• Title/Summary/Keyword: Aluminum foundry

Search Result 222, Processing Time 0.016 seconds

Effects of GBF Treatment Conditions and Scrap Ratio on the Electric Conductivity of Commercial Pure Aluminum (공업용 순알루미늄의 전기전도도에 미치는 스크랩비율 및 GBF처리조건의 영향)

  • Hwang, Nam-Gyu;Kim, Young-Chan;Choi, Se-Won;Kang, Chang-Seok;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.130-136
    • /
    • 2011
  • Effects of GBF (gas bubbling filtration) treatment conditions and scrap ratio on the electric conductivity of a commercial pure aluminum for diecasting were investigated using by specific gravity and electrical conductivity measurement system, hydrogen gas analyzer, XRD, and EDS. Electrical conductivities of specimen mixed Al scrap ratio until 60% from 0% were decreased with increasing the precipitates amount and size of AlFeSi ternary intermetallic compound on the grain boundary as well as amount of porosity in the grain. On the other hand, electrical conductivities was reincreased gradually in spite of scrap ratio increase from 80% to 100%. Size of AlFeSi compound formed on the grain boundary were coarsened with the increament of scrap ratios untill 80% and GBF treatment time simultaneously.

Influence of Cu and Zn Contents on the Properties of Al-Fe-Cu-Mg Based Casting Alloys (Cu 및 Mg 첨가량에 따른 Al-Fe-Cu-Mg계 주조합금의 특성변화)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Shin, Je-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.130-135
    • /
    • 2014
  • Efforts have been made to develop new silicon-free aluminum casting alloys that possess high electrical and thermal conductivity. In this research Al-Fe-Cu-Mg alloys with various Cu and Mg contents were investigated for their various properties. As the Cu or Mg content was increased, the electrical conductivity gradually decreased, while the tensile strength of the Al-Fe-Cu-Mg alloy tended to be improved. It was found that fluidity was generally inversely proportional to the Cu content, but the alloys containing 1%Mg showed considerably low fluidity, regardless of the Cu content.

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF

Microstructure and Mechanical Behavior of Al-Mg-Si/Al Hybrid Alloy by Duo-casting (듀오캐스트 Al-Mg-Si/Al 하이브리드 합금의 미세조직과 기계적 변형 특성)

  • Han, Ji-Min;Kim, Chong-Ho;Park, Jun-Pyo;Chang, Si Young
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.269-275
    • /
    • 2012
  • Al-Mg-Si/Al hybrid alloy was prepared by Duo-casting and the mechanical behavior was evaluated based on their microstructure and mechanical properties. The hybrid aluminum alloy included the Al-Mg-Si alloy with fine eutectic structure, pure Al with the columnar and equiaxed crystals, and the macro-interface existing between Al-Mg-Si alloy and pure Al. The growth of columnar grains in pure Al occurred from the macro-interface. The tensile strength, 0.2% proof stress and bending strength of the hybrid aluminum alloy were almost similar to those of pure Al, and the elongation was much higher than the Al-Mg-Si alloy. The fracture of the hybrid alloy took place in pure Al side, indicating that the macro-interface was well bonded and the mechanical behavior strongly depends on the limited deformation in pure Al side.

A study on the Continuous Elimination of Inclusions in Al Alloy by Electromagnetic Force (전자기력을 이용한 알루미늄 합금중 개재물의 연속적 제거에 관한 연구)

  • Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.130-136
    • /
    • 2002
  • The growing use of aluminum for castings over the past decade has brought with it the increased scrutiny of component properties. One area that has received much attention is the effect of in inclusions - or impurities particles held in the metal - on casting properties. A new method of electromagnetic separation for removal of inclusions in aluminum alloy melts is proposed. The principle is that as the electromagnetic force induced in metal acts on inclusions due to low electric conductivity, they are moved to the direction opposite to electromagnetic force and can be separated and removed from the melt. Experiments were carried out on A356 melt mixed alumina particles and commercial Al alloys of ADC 10 and 12. In the experiment using A356, it was proved that $Al_2O_3$ particles was separated and removed continuously from matrix melt by electromagnetic force. Based on these results, the continuous separation experiment that used ADC 10, 12 was carried and the cleanliness of melt was assessed by the amount of porosity, hydrogen contents, PoDFA and mechanical properties through tensile test. As the results of analyses, the amount of porosity and hydrogen contents decreased without variation of chemical composition in the specimen that passed the electromagnetic continuous separator. In addition, tensile strength and elongation of this specimen increased by $20{\sim}30%$ because of reduction of inclusions.

Investigation on Characteristics of Various Mold Packing Materials in Lost Foam Casting of Aluminum Alloy (알루미늄 합금 소실모형주조 시의 주형충전재에 따른 특성변화)

  • Kim, Ki-Young;Lee, Kyung-Whoan;Rim, Kyung-Hwa
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • Silica sand, zircon sand, and steel shots were used as mold packing materials in lost foam casting of the aluminum alloy bar. Vibration acceleration in three directions and temperatures in the casting and mold were measured, and packing and cooling characteristics of these materials were investigated. Packing densities increased with increase in vibration magnitude and time, and were $1.41{\sim}1.49g/cm^2$ for silica sand, $2.54{\sim}2.86g/cm^2$ for zircon sand, and $3.92{\sim}4.52g/cm^2$ for steel shots. Sound castings were obtained only without evacuation of the flask during pouring. Solidification time became faster in order of silica sand, zircon sand and steel shot packing because steel shot has the highest cooling capacity of them. Solidification time of steel shot packing was shortened to about 1/2 of silica sand packing. Cooling capacity of sand mold was generally evaluated by heat diffusivity of the mold, however could be simply evaluated with specific heat per unit volume of the packing material in lost foam casting.

Effect of Mold Preheat Temperature on Solidification Crack Strength of AC2B Aluminum Alloy (AC2B 알루미늄 주조합금의 응고균열 강도에 미치는 금형 예열온도의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.162-169
    • /
    • 2014
  • The effect of the mold preheat temperature on the solidification crack strength was investigated in AC2B aluminum alloy. A tension type apparatus as part of a solidification crack test which could measure the stress-strain relationship quantitatively was utilized. The evaluation of the solidification crack strength with varying mold preheat temperatures was performed by the test procedure established in this research. When the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the solidification crack strengths were found to be $7.8Kgf/cm^2$, $12.9Kgf/cm^2$ and $28.6Kgf/cm^2$, respectively. In the same way, when the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the corresponding temperatures of the failure sites were $610^{\circ}C$, $600^{\circ}C$ and $571^{\circ}C$, and the calculated solid fractions were 14.0%, 29.3% and 50.8% when the specimens failed, respectively. The solidification crack strength increased in proportion to the solid fraction of the failure site. The solidification crack strength obtained in this test is assumed to reflect the effects of metallurgical factors on the thermo-plastic characteristics of a solidifying alloy such as the grain size of the solid, the grain morphology, and the distribution of solid grain.

Effect of Mold Materials on the Microstructure and Tensile Properties of Al-Si based Lost Foam Casting Alloy (Al-Si계 소실모형주조합금의 미세조직 및 인장성질에 미치는 주형재료의 영향)

  • Kim, Jeong-Min;Lee, Gang-Rae;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.39 no.5
    • /
    • pp.87-93
    • /
    • 2019
  • The effects of mold materials on the microstructure and tensile properties were investigated to develop a mass production technique of aluminum alloy parts with excellent mechanical properties using a lost foam casting method. The microstructures of the plate-shaped cast alloy showed a tendency to be finer in proportion to the thickness of the plate, and a remarkably fine structure was obtained by applying a steel chill or a ball as a mold material compared to general sand. When a steel ball was used, it was observed that the larger the ball, the finer the cast structure and the better the tensile properties. The microstructure and tensile properties of the cast parts with complex shapes were greatly affected by the gating system, but the positive effects of the steel chill and the steel ball as a mold material were clear.

Effects of Zn and Mg Amounts on the Properties of High Thermal Conductivity Al-Zn-Mg-Fe Alloys for Die Casting (다이캐스팅용 고열전도도 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가량의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • The effects of Zn and Mg amounts on the solidification characteristics, microstructure, thermal conductivity and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high thermal conductivity aluminium alloys for die casting. Zn and Mg amounts in Al-Zn-Mg-Fe alloys had a little effect on the liquidus / solidus temperature, the latent heat for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by JMatPro program showed $MgZn_2$, AlCuMgZn and Al3Fe phases on microstructure of their alloys. Increase of Zn and Mg amounts in Al-Zn-Mg-Fe alloys resulted in gradual reduction of the thermal conductivity of their alloys. Increase of Mg amounts in Al-2%Zn-Mg-Fe alloys had little effect on the tensile strength of their alloys, but increase of Mg amounts in Al-4%Zn-Mg-Fe alloys resulted in steep increase of the tensile strength of their alloys.

Effects of Alloying Elements on the Properties of High Strength and High Thermal Conductivity Al-Zn-Mg-Fe Alloy for Die Casting (다이캐스팅용 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.171-180
    • /
    • 2013
  • The effects of alloying elements on the solidification characteristics, microstructure, thermal conductivity, and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high strength and high thermal conductivity aluminium alloy for die casting. The amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the liquidus/solidus temperature, the latent heat for solidification, the energy release for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by the JMatPro program showed $MgZn_2$, AlCuMgZn and $Al_3Fe$ phases in the microstructure of the alloys. Increased amounts of Mg in Al-Zn-Mg-Fe alloys resulted in phase transformation, such as $MgZn_2{\Rightarrow}MgZn_2+AlCuMgZn{\Rightarrow}AlCuMgZn$ in the microstructure of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys resulted in a gradual reduction of the thermal conductivity of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the tensile strength of the alloys.