• Title/Summary/Keyword: Aluminum form

Search Result 307, Processing Time 0.025 seconds

Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere

  • SHIN WANSIK;RYU JEOUNGHYUN;CHOI SEUNGJU;KIM CHUNGWOO;GADAGI RAVI;MADHAIYAN MUNUSAMY;SESHADRI SUNDARAM;CHUNG JONGBAE;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1273-1279
    • /
    • 2005
  • Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.

Development of Micro Rocket Using Mechanical Micro Machining (기계식 마이크로 가공을 이용한 마이크로 로켓의 개발)

  • Baek,Chang-Il;Chu,Won-Sik;An,Seong-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.32-37
    • /
    • 2003
  • The trend of miniaturization has been applied to the research on micro rockets resulting in prototype rockets fabricated by MEMS processes. In this paper, the development of three-dimensional micro rockets using micro milling as well as the results of combustion and flight tests are discussed. The body of rocket was made of 6061 aluminum cylinder. The three-dimensional micro nozzles were fabricated on brass by micro endmill with 127${\mu}m$ diameter. Two different micro nozzles were fabricated, one with 1.0mm of throat diameter and the other with 0.5mm. The total mass of rocket was 7.32g and that of propellant was 0.65g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle form the ground resulted in 46m-53m of horizontal flight distance

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

Fabrication of Sub-Micron Size $Al-AlO_x-Al$ Tunnel Junction using Electron-Beam Lithography and Double-Angle Shadow Evaporation Technique (전자빔 패터닝과 double-angle 그림자 증착법을 이용한 sub-micron 크기의 $Al-AlO_x-Al$ 터널접합 제작공정개발)

  • Rehmana, M.;Choi, J.W.;Ryu, S.J.;Park, J.H.;Ryu, S.W.;Khim, Z.G.;Song, W.;Chong, Y.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.99-102
    • /
    • 2009
  • We report our development of the fabrication process of sub-micron scale $Al-AlO_x-Al$ tunnel junction by using electron-beam lithography and double-angle shadow evaporation technique. We used double-layer resist to construct a suspended bridge structure, and double-angle electron-beam evaporation to form a sub-micron scale overlapped junction. We adopted an e-beam insensitive resist as a bottom sacrificing layer. Tunnel barrier was formed by oxidation of the bottom aluminum layer between the bottom and top electrode deposition, which was done in a separate load-lock chamber. The junction resistance is designed and controlled to be 50 $\Omega$ to match the impedance of the transmission line. The junctions will be used in the broadband shot noise thermometry experiment, which will serve as a link between the electrical unit and the thermodynamic unit.

  • PDF

Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation

  • Yoon, Mi-Young;Kim, Eun-Yi;Kim, Young-Hee;Whang, Chin-Myung
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.451-456
    • /
    • 2010
  • A promising candidate material for a $H_2$ permeable membrane is SiC due to its many unique properties. A hydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer $\gamma-Al_2O_3$ with a graded structure. The $\gamma-Al_2O_3$ multilayer was formed on top of a macroporous $\alpha-Al_2O_3$ support by consecutively dipping into a set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols were prepared from an aluminum isopropoxide precursor and heated to $80^{\circ}C$ with high speed stirring for 24 hrs to hydrolyze the precursor. Then the solutions were refluxed at $92^{\circ}C$ for 20 hrs to form a boehmite precipitate. The particle size of the boehmite sols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiC layer was formed on top of the intermediate $\gamma-Al_2O_3$ by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. The resulting amorphous SiC-on-$Al_2O_3$ composite membrane pyrolyzed at $900^{\circ}C$ possessed a high $H_2$ permeability of $3.61\times10^{-7}$ $mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and the $H_2/CO_2$ selectivity was much higher than the theoretical value of 4.69 in all permeation temperature ranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism, which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.

The Effect of Ca Addition on the Grain Growth Inhibition During Reheating Process of Al-Zn-Mg Al Alloys for Thixo-extrusion (반응고 Al-Zn-Mg계 합금의 반용융 압출을 위한 재가열 시 결정립 성장 억제에 미치는 Ca 첨가의 영향)

  • Park, Hyung-Won;Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Hee-Kyung;Seong, Bong-Hak;Choi, Chang-Ock;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.347-353
    • /
    • 2011
  • There is thixo-extrusion to form high strength aluminum alloy. But, it is a problem that grains become grain coarsening during reheating process because the alloy was exposed at high temperature. In order to solve grain growth during reheating process, calcium was added in Al-Zn-Mg alloys. Primary a grain sizes of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca were measured with image analyzer after reheating. Measured primary a grain sizes were applied to LSW(Lifshitz-Slyozov and Wagner) equation to check the effect of Ca on grain coarsening. Coarsening rate constant K values of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca alloys were $371\;mm^3s^{-1}$, $247\;mm^3s^{-1}$, $198\;mm^3s^{-1}$ and $166 mm^3s^{-1}$, respectively. As increasing calcium content, K value decreased which means grains are refined. Also, grains of calcium addition were more spherical than that of calcium free.

An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine (대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구)

  • Song, Chang Kyu;Khim, Gyungho;Hwang, Jooho;Kim, Byung Sub;Park, Chun Hong;Lee, Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.

Detection and Sizing of Fatigue Cracks in Thin Aluminum Panel with Rivet Holes (리벳구멍을 가진 알루미늄 패널에서 피로균열의 탐지와 균열길이 측정)

  • Kim, Jung-Chan;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2007
  • The initiation of fatigue cracks in a simulated aircraft structure with a series of rivet holes was detected by acoustic emission(AE), then the crack length was determined by surface acoustic wave(SAW) technique. With the initiation and growth of fatigue cracks, AE events increased intermittently to form a stepwise incremental curve of cumulative AE events whereas the crack length increased more or less monotonically. With the SAW technique employed, the crack sizing for 13 different cracks including some short cracks was performed. With the reference to the measurement by traveling microscope, cracks in the range of $1{\sim}8mm$ long were reliably sized by the SAW technique. Although it was impossible to size the short fatigue cracks in the range shorter than 1 mm, the SAW technique still appeared practically useful for a range of crack lengths often found in aircraft structures.

The study of oxide etching characteristics using inductively coupled plasma for silica waveguide fabircation (실리카 도파로(Silica Waveguide) 제작을 위한 Inductively Coupled Plasma에 의한 산화막 식각특성 연구)

  • 박상호;권광호;정명영;최태구
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.287-292
    • /
    • 1997
  • This study was tried to form the silica waveguide using high density plasma. Plasma characteristics have been investigated as a function of etch parameters using a single Langmuir probe and optical emission spectroscopy(OES). As etch parameters, $CF_4/CHF_3$ ratio, bias power, and source power were chosen as main variables. The oxide etch characteristics of inductively coupled plasma(ICP) dry etcher such as the etch rate, etch profile, and surface roughness were investigated s a function of etch parameters. On the basis of these results, the core pattern of the wave guide composed of $SiO_2-P_2O_5$ was formed. It was confirmed that the etch rate of $SiO_2-P_2O_5$ core layer was 380 nm/min and the aluminum selectivity to oxide, that is, mask layer was approximately 30:1. The SEM images showed vertical etched profiles and minimal loss of pattern width.

  • PDF

Bioremediation of Heavy Metal Contaminated Mine Wastes using Urease Based Plant Extract (요소분해효소 기반 식물추출액을 이용한 광산폐기물 내 중금속 오염 저감)

  • Roh, Seung-Bum;Park, Min-Jeong;Chon, Chul-Min;Kim, Jae-Gon;Song, Hocheol;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • Acid mine drainage occurrence is a serious environmental problem by mining industry, it usually contains high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of the greatest concern. An indigenous plant extract was used to produce calcium carbonate from Canavalia ensiformis as effective biomaterial, and its ability to form the calcium carbonate under stable conditions was compared to that of purified urease. X-ray diffraction and scanning electron microscopy were employed to elucidate the mechanism of calcium carbonate formation from the crude plant extracts. The results revealed that urease in the plant extracts catalyzed the hydrolysis of urea in liquid state cultures and decreased heavy metal amounts in the contaminated soil. The heavy metal amounts were decreased in the leachate from the treated mine soil; 31.7% of As, 65.8% of Mn, 50.6% of Zn, 51.6% of Pb, 45.1% of Cr, and 49.7% of Cu, respectively. The procedure described herein is a simple and beneficial method of calcium carbonate biomineralization without cultivation of microorganisms or further purification of crude extracts. This study suggests that crude plant extracts of Canavalia ensiformis have the potential to be used in place of purified forms of the enzyme during remediation of heavy metal contaminated soil.