• 제목/요약/키워드: Aluminum contamination

검색결과 52건 처리시간 0.028초

무기 응결제가 신문용지의 사이즈도와 공정오염에 미치는 영향 (Effects of Inorganic Coagulants on Sizing and Contamination in Newsprint Mill)

  • 이태주;서진호;이광섭;정성현;류정용
    • 펄프종이기술
    • /
    • 제47권3호
    • /
    • pp.40-46
    • /
    • 2015
  • For some Korean newsprint mill, addition level of aluminum sulfate has been reduced because sulfur from aluminum sulfate has detrimental effect on the efficiency of anaerobic water treatment. At this moment, an unexpected decrease in sizing degree of TMP mixed newspaper was occurred. The phenomena means that hydrophobic substance usually originated from TMP cannot be fixed on the paper. This study focused on effect of alum and PAC on sizing of paper and contamination. Also, substitutability of PAC was discussed as a possible alternatives of aluminum sulfate under anaerobic condition of water treatment. Evaluation of sizing degree and pitch deposit potential were performed at the varied addition level of PAC and aluminum sulfate. Hydrophobic substance mainly derived from TMP could be fixed on the surface of fiber by PAC. Fines retention was not changed by replacing aluminum sulfate with PAC. Additionally, fixing of hydrophobic substance without excessive agglomeration can be enhanced by PAC with low molecular weight. Consequently, sizing degree of newspaper and contamination of recycling process of ONP can be controlled by low molecular weighted PAC.

저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구 (Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition)

  • 김기철;송근수;김형태;유경훈;강정진;황준영;이상호;강경태;강희석;조영준
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.577-582
    • /
    • 2013
  • AZO(Aluminium-doped Zinc Oxide)는 기존의 LCD, OLED, 광센서, 유기태양전지 등의 투명전극에 널리 사용되는 ITO(Indium Tin Oxide)를 대체하기 위한 물질로 주목받고 있다. 본 연구에서는 유기태양전지의 투명 전극으로 많이 사용되는 ITO 를 대체하기 위해 원자층 증착(ALD) 공정의 저온 선택적 증착 특성을 이용하여 유연성 폴리머인 PEN 기판상에 AZO 투명전극을 직접 패턴방식으로 제조하고, 그 투명전극의 구조적, 전기적, 광학적 특성을 평가하였다. 전기적, 광학적 특성 결과들로부터 원자층 증작공정의 저온 선택적 증착 특성을 통해 형성된 AZO 투명전극의 유기태양전지로의 적용 가능성을 확인할 수 있었다.

포장방법별 소엽, 박하의 저장성 연구 (Studies on Storage Characteristics of Perilla Perfrutescens var. Acuta, Mentha Arvensis L. var. Piperascens Malinvaud According to Packaging Method)

  • 김수민;김은주
    • 대한본초학회지
    • /
    • 제24권1호
    • /
    • pp.9-14
    • /
    • 2009
  • Objectives : The purpose of this study is to investigate on storage characteristics of flavouring oriental medicine materials according to Packaging method(Aluminum package, PP). Methods : This experiments were carried out by field survey and storage characteristics were carried out by physicochemical determination. Results : Flavouring oriental medicine materials were used to in aluminum package to keep original flavour in Japan and Chinese by field and study survey. In view of this survey results, it is very desirable to use zipper Aluminum package in flavouring oriental medicine materials(Perilla perfrutescens var. acuta, Mentha arvensis L. var. piperascens malinvaud). Conclusions : This study results revealed that Aluminum package were superior to any other package method on the basis of keeping original flavour and to reduce microbial contamination in oriental medicine materials.

Tritium extraction in aluminum metal by heating method without melting

  • Kang, Ki Joon;Byun, Jaehoon;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.469-478
    • /
    • 2022
  • Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperature furnace at 200, 300, or 400 ℃ for 15 h. The extracted tritium was analyzed by using a liquid scintillation counter (LSC); the sample thicknesses were 0.4 and 2 mm. The differences in tritium extraction over time were also investigated by cutting aluminum stick samples into several pieces (1, 5, 10, and 15) with the same thickness, and subsequently heating them. The results revealed that there are most of the hydrated material based on tritium on the surface of aluminum. When the temperature was increased from 200 or 300 ℃-400 ℃, there are no large differences in the heating duration required for the radioactivity concentration to be lower than the MDA value. Additionally, at the same thickness, because the surface of aluminum is only contaminated to tritiated water, cutting the aluminum samples into several pieces (5, 10, and 15) did not have a substantial effect on the tritium extraction fraction at any of the applied heating temperatures (200, 300, or 400 ℃). The proportion of each tritium-release materials (aluminum hydrate based on tritium) were investigated via diverse analyses (LSC, XRD, and SEM-EDS).

Surface Analysis of Aluminum Bonding Pads in Flash Memory Multichip Packaging

  • Son, Dong Ju;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.221-225
    • /
    • 2014
  • Although gold wire bonding techniques have already matured in semiconductor manufacturing, weakly bonded wires in semiconductor chip assembly can jeopardize the reliability of the final product. In this paper, weakly bonded or failed aluminum bonding pads are analyzed using X-ray photoelectron spectroscopy (XPS), Auger electron Spectroscopy (AES), and energy dispersive X-ray analysis (EDX) to investigate potential contaminants on the bond pad. We found the source of contaminants is related to the dry etching process in the previous manufacturing step, and fluorocarbon plasma etching of a passivation layer showed meaningful evidence of the formation of fluorinated by-products of $AlF_x$ on the bond pads. Surface analysis of the contaminated aluminum layer revealed the presence of fluorinated compounds $AlOF_x$, $Al(OF)_x$, $Al(OH)_x$, and $CF_x$.

세륨염을 첨가한 황산법 양극산화피막의 오염입자 및 열크랙 거동 (Contamination Particle and Cracking Behavior of the Anodic Oxidation in Sulfuric Acid Containing Cerium Salt)

  • 소종호;윤주영;신재수
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.11-15
    • /
    • 2018
  • The parts of equipment for semiconductor are protected by anodic aluminum oxide film to prevent corrosion. This study investigated contamination particle and cracking behavior of anodic oxidation in sulfuric acid containing cerium salt. The insulating properties of the sample were evaluated by measuring the breakdown voltage. It was confirmed that the breakdown voltage was about 50% higher when the cerium salt was added, and that the breakdown voltage after the heat treatment was 55% and 35% higher at $300^{\circ}C$ and $400^{\circ}C$, respectively. After heating at $300^{\circ}C$ and $400^{\circ}C$, cracks were observed in non cerium and cerium 3mM, and more cracks occur at $400^{\circ}C$ than at $30^{\circ}C$. The amount of contamination particles generated in the plasma is about 45% less than that of non-cerium specimens.

An aluminum-based reflective nanolens array that enhances the effectiveness of a continuous-flow ultraviolet disinfection system for livestock water

  • Changhoon Chai;Jinhyung Park
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.258-270
    • /
    • 2023
  • Climate change has worsened droughts and floods, and created conditions more likely to lead to pathogen contamination of surface water and groundwater. Thus, there is a growing need to disinfect livestock water. Ultraviolet (UV) irradiation is widely accepted as an appropriate method for disinfecting livestock water, as it does not produce hazardous chemical compounds and kills pathogens. However, UV-based disinfection inevitably consumes electricity, so it is necessary to improve UV disinfection effectiveness. Aluminum-based reflective nanolens arrays that enhanced the effectiveness of a continuous-flow UV water disinfection system were developed using electrochemical and chemical processes, including electropolishing and two-step anodization. A continuous UV disinfection system was custom designed and the parts were produced using a three-dimensional printer. Electropolished aluminum was anodized at 40 and 80 V in 0.3 M oxalic acid, at 120 and 160 V in 1.0 M phosphoric acid, and at 200 and 240 V in 1.5 M citric acid. The average nanolens diameters (D) of the aluminum-based reflective nanolens arrays prepared using 40, 80, 120, 160, 200, and 240 V anodization were 95.44, 160.98, 226.64, 309.90, 296.32, and 339.68 nm, respectively. Simple UV reflection behind irradiated water disinfected Escherichia coli O157:H7 in water more than did the non-reflective control. UV reflection and focusing behind irradiated water using an aluminum-based reflective nanolens array disinfected E. coli O157:H7 more than did simple UV reflection. Such enhancement of the UV disinfection effectiveness was significantly effective when a nanolens array with D 226.64 nm, close to the wavelength of the irradiated UV (254 nm), was used.

용탕청정기능을 부여한 고품질 다이캐스팅 기술의 개발 (Development of High Quality Die Casting Technology with Function to Purify Molten Metal)

  • 파다야지지;고목박기;도원삼차
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.3-9
    • /
    • 2004
  • Die casting is "a process in which molten metal is injected at high velocity and pressure into a mold(die) cavity". Casting with smooth surfaces, high dimensional precision, complicated shapes, and reduced weight can be obtained using this process. But this process is susceptible to casting defects such as porosities, scattered chilled layers, hard spots, etc. For preventing casting defects, we developed "low-velocity high pressure die casting technology", "squeeze die casting technology", "heat insulating sleeve lubricant technology", and "direct pouring technology". The "direct pouring technology" is useful for producing molten metal without oxide contamination. It consists of a pumping system which supplies pure molten metal to the die casting machine. By using this technology, we have successfully reduced oxide contamination in castings to 1/20 of that of our previous castings.

Control of phosphoric acid induced volume change in clays using fly ash

  • Chavali, Rama Vara Prasad;Reddy, P. Hari Prasad
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1135-1141
    • /
    • 2018
  • Volume changes of soils induced by inorganic acids cause severe foundation and superstructure failures in industrial buildings. This study aimed to assess the potential of fly ash to control volume changes in soils under acidic environment. Two soils such as black cotton soil predominant with montmorillonite and kaolin clay predominant with kaolinite were used for the present investigation. Both soils exhibited an increase in swelling subjected to phosphoric acid contamination. Ion exchange reactions and mineralogical transformations lead to an increase in swelling and a decrease in compressibility in black cotton soil, whereas phosphate adsorption and mineral dissolution lead to an increase in swelling and compressibility in case of kaolin clay. Different percentages of Class F fly ash obtained from Ramagundam national thermal power station were used for soil treatment. Fly ash treatment leads to significant reduction in swelling and compressibility, which is attributed to the formation of aluminum phosphate cements in the presence of phosphoric acid.

알루미늄 합금의 용접특성 - part I : 균열 및 기공 (Weldability of Al Alloys,Part I ;Cfacking and Porosity)

  • 이창희;장래웅
    • Journal of Welding and Joining
    • /
    • 제10권3호
    • /
    • pp.1-12
    • /
    • 1992
  • A literature review was conducted to survey informations available on the welding metallurgy of aluminum alloys and its effect on fusion weldability, especially on solidification cracking and pore formation. Solidification cracking behavior of Al weld is a complicate matter as compared to other high alloys, where a relatively simple Fe-X(most detrimental elements S, P, B, Si, etc) binary diagram can be successfully applicable. Both additive and synergistic effects of elements should be considered together. A same element play a different role from system to system. Porosity, caused by hydrogen contamination of the weld is one of the most troublesome welding problems. The primary sources of hydrogen are believed to be an absorbed moisture on the filler metal or base metal and in the shielding gas. It is extremely important that reliable quality-control procedures be employed to eliminate all possible sources of hydrogen contamination. Selection of proper process and parameters is sometimes more important than controlling of alloying elements in order to make a defect-free weld.

  • PDF