• Title/Summary/Keyword: Aluminum anodizing

Search Result 147, Processing Time 0.035 seconds

Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder (양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

Study on Methods of Enhancement and Measurement of Corrosion Resistance for Subsea Equipment made of Aluminum (알루미늄으로 제작된 심해 장비의 부식 저항 능력 향상 방법 및 측정 방법 조사)

  • Seo, Youngkyun;Jung, Jung-Yeul
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.47-52
    • /
    • 2020
  • This study investigated the methodologies to enhance the corrosion resistance and the ways to measure for subsea equipment made of aluminum. The methodologies for the anticorrosion were cathodic protection, conversion coating, anodizing and organic coating. The simply analyzed ways to measure the corrosion resistance were Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), Glow discharge optical emission spectrum spectroscopy (GD-OES), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Scanning Vibrating Electrode Technique (SVET), contact angle and interfacial tension. The most widely used tools for increasing the corrosion resistance were the anodizing and the organic coating. Many ways were evenly used to measure corrosion. The methods more frequently utilized were SEM for the surface investigation and the contact angle to evaluate the corrosion resistance.

Evaluation of Corrosion and Cavitation Erosion Resistance of Sealed Aluminum Alloy after Anodizing Treatment in Seawater (양극산화 후 실링처리된 알루미늄 합금의 해수 내 내식성과 캐비테이션 침식 저항성 평가)

  • Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • Various sealing techniques were applied to the anodized 5083 aluminum alloy for marine environment to reduce corrosion and cavitation erosion damage. Electrochemical experiments and cavitation erosion tests were conducted to evaluate the corrosion resistance and cavitation resistance of the anodic oxide film treated with sealing in natural seawater solution. Then, damaged surface morphology was analyzed by scanning electron microscope(SEM) and 3D microscope. As the results of the electrochemical experiments, it was observed that the surface damage of all the experimental conditions in the anodic polarization experiment was locally grown by the combination of crack and corrosion damage. In the Tafel analysis, the corrosion resistance of all sealing treatment conditions was improved compared to the anodizing. On the other hand, cavitation erosion tests showed that the anodizing and all the sealing treatment conditions generated local pit damage by cavitation erosion attack and grew to crater damage in the observation of damaged surface by SEM. Also, the weight loss and the surface damage depth measured with the experiment time presented that most of the sealing treatment conditions showed better cavitation erosion resistance than the anodizing, and they had an incubation period at the beginning of the experiment.

Properties of double-layered anodizing films on Al alloys formed by two consecutive anodizings (알루미늄 합금의 연속식 양극산화법으로 형성시킨 이중 산화막층의 특성)

  • Jeong, Nagyeom;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.30-36
    • /
    • 2021
  • In this study, double-layered anodizing films were formed on Al 5052 and Al 6061 alloys consecutively first in sulfuric acid and then in oxalic acid, and hardness, withstand voltage, surface roughness and acid resistance of the anodizing films were compared with single-layered anodizing films in sulfuric acid and oxalic acid electrolytes. Hardness of the double-layered anodizing film decreased with increasing ratio of inner layer to outer layer for both Al 5052 and Al 6061 alloys, suggesting that outer anodizing film formed in sulfuric acid electrolyte is damaged during the second anodizing in oxalic acid electrolyte. Withstand voltage of the double-layered anodizing films increased with increasing the thickness ratio of inner layer to outer layer. Surface roughness of the double-layered anodizing films were comparable with that of single-layered anodizing film formed in sulfuric acid but higher than that of single layer anodizing film formed in oxalic acid electrolyte. In acid resistance test, all of the double-layered and single-layered anodizing films showed good acid resistance more than 3 h without any visible gas evolution, which is attributable to sealing of pores. Based on the experimental results obtained in this work, it is possible to design a double-layered anodizing film with cost-effectiveness and improved physical and electrical properties by combining two consecutive anodizing processes of sulfuric acid anodizing and oxalic acid anodizing methods.

Metal nano-wire fabrication and properties (금속 나노와이어의 제조와 특성)

  • Hamrakulov, B.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.432-434
    • /
    • 2009
  • Metal nano-wire arrays on Cu-coated seed layers were fabricated by aqueous solution method using sulfate bath at room temperature. The seed layers were coated on Anodic aluminum oxide (AAO) bottom substrates by electrochemical deposition technique, length and diameter of metal nano-wires were dominated by controlling the deposition parameters, such as deposition potential and time, electrolyte temperature. Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni, Fe, Co and Cu multilayer magnetic nano-wire arrays. This template was fabricated with two-step anodizing method, using dissimilar solutions for Al anodizing. The pore of anodic aluminum oxide templates were perfectly hexagonal arranged pore domains. The ordered Ni, Fe, Co and Cu systems nano-wire arrays were characterized by Field Emission Scanning Electron Microscopy (FE-SEM) and Vibrating Sample Magnetometer (VSM). The ordered Ni, Fe, Co and Cu systems nano-wires had different preferred orientation. In addition, these nano-wires showed different magnetization properties under the electrodepositing conditions.

  • PDF

Comparison of Hydrophobicity and Corrosion Properties of Aluminum 5052 and 6061 Alloys After Anodized Surface Treatment (알루미늄 5052 및 6061 합금의 양극산화 표면처리를 통한 발수 특성 및 부식 특성 비교)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.200-208
    • /
    • 2022
  • Aluminum alloy is used by adding various elements according to the needs of the industry. Aluminum alloys such as 5052 and 6061 are known to possess excellent corrosion resistance by adding Mg. Despite their excellent physical properties, corrosion can occur. To solve this problem, an anodization technique generally can improve corrosion resistance by forming an oxide structure with maximized hydrophobic properties through coatings. In this study, the anodizing technique was used to improve the hydrophobicity of aluminum 5052 and 6061 by creating porous nanostructures on top of the surface. An oxide film was formed by applying anodizing voltages of 20, 40, 60, 80, and 100 V to aluminum alloys followed by immersion in 0.1 M phosphoric acid for 30 minutes to expand oxide pores. Contact angle and corrosion characteristics were different according to the structure after anodization. For the 5052 aluminum, the corrosion potential was improved from -363 mV to -154 mV as the contact angle increased from 116° to 136°. For the 6061 aluminum, the corrosion potential improved from -399 mV to -124 mV when the contact angle increased from 116° to 134°.

Structural and Electrical Properties of Nanotube as Various Second Anodizing Time for Biosensor (바이오 센서로의 응용을 위한 2차 양극산화 시간에 따른 나노튜브의 구조적, 전기적 특성)

  • Kim, Yong-Jun;Lee, Tae-Ho;Jung, Hye-Rin;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.741-744
    • /
    • 2013
  • In this study, we fabricated anodic aluminum oxide (AAO) membrane by two step anodizing process for pH detection. The structural properties were observed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). Electrochemical measurements of the pH sensor have been performed in capacitance-voltage (C-V) and drift rates. The characterization of AAO membrane exhibited high sensitivity (99.1 mV/pH) at second anodizing time of 4 min.

Study of reflection rate character of anodized aluminum thin film (알루미늄 양극산화피막의 반사율 특성연구)

  • Kim, Seung-Kyum;Kim, Dong-Hyun;Joo, In-Joong;Nam, In-Tak;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.227-232
    • /
    • 2003
  • Anodizing film was prepared by anodic oxidation of pure aluminum(purity > 99.50) using DC power supply for constant current mode in an electrolytic solution of surface of sulfuric acid. Effects of pre-treatment process such as chemical polishing, acid cleaning, alkali etching before anodic oxidation, were studied to microstructures and surface morphologies. A roughness on surface of anodizing film had to be decreased for amorphous phase by anodic oxidation. A roughness on surface of anodizing film decrease as annealing temperature increased in chemical polishing.

  • PDF

Convergent Study of Aluminum Anodizing Method on the Thermal Fatigue (열 피로에 미치는 알루미늄 양극산화 제조방법의 융합연구)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.169-173
    • /
    • 2016
  • Anodic oxidation of aluminum has a sulfuric acid method and a oxalic acid method. Sulfuric acid concentration of the sulfuric acid method is 15~20 wt%. In the case of soft anodizing used in the $20{\sim}30^{\circ}C$ range, and voltage is the most used within a DC voltage 13~15V. In the case of hard anodizing used in the $0{\sim}-5^{\circ}C$ range. An aluminum oxide layer is made using sulfuric acid and oxalic acid. In this study, thermal fatigue of aluminum oxide layer which is made using sulfuric acid and oxalic acid is compared. Crack generating temperature of a sulfuric acid method and a oxalic acid method is $500^{\circ}C$ and $600^{\circ}C$. Thermal fatigue of aluminum oxide layer which is made using oxalic acid is better than thermal fatigue of aluminum oxide layer which is made using sulfuric acid. The characteristic of thermal fatigue can be explained by using thermal expansion coefficient of Al and Al2O3 and manufacturing temperature on Al anodizing. It was made possible through the convergent study to propose the manufacturing method of the anodic oxidation product used at a high temperature.