• Title/Summary/Keyword: Aluminum Thin Sheet

Search Result 42, Processing Time 0.032 seconds

Blanking Process of Aluminum Thin Sheet for Lithium Ion Battery (리튬 이온전지용 알루미늄 박판의 블랭킹 공정에 관한 연구)

  • Kim, M.G.;Kim, J.H.;Shin, H.J.;Moon, J.H.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.179-185
    • /
    • 2021
  • Lithium ion batteries are generally manufactured by laser and etching using aluminum thin sheet. These processes are relatively expensive and have low productivity. In this study, blanking process of aluminum thin sheet for lithium ion battery was employed to replace laser cutting and etching process, all to reduce the production cost and improve productivity. Mechanical properties for aluminum and coating were determined by experimental results and rule of mixture for FE analysis of blanking process. Normalized Cockcroft-Latham criteria was also applied to describe shear behavior and critical damage values were determined by comparison of analytical and experimental result. We performed FE analysis to investigate the effects of clearance and punch-die radius on sheared surface of aluminum thin sheet and to determine optimal process condition. We manufactured the die set using the determined optimal process and conducted an experiment to confirm the feasibility of blanking process. The sheared surface of manufactured product was observed by optical microscope. As a results, the proposed process conditions successfully achieved the dimensional requirement in production of lithium ion battery parts.

Retardation Behavior of Fatigue Crack Growth and Fatigue Life Prediction of Thin Sheet Al 2024-T3 Alloy (박판 Al 2024-T3 합금재료의 피로균열성장지연거동과 피로수명예측)

  • Kim, S.G.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2011
  • Sheet aluminum alloys have been used in manufacturing of machine structures. In fatigue crack propagation behavior of thin sheet aluminum alloys, it is important that fatigue crack growth rate is affected by crack closure phenomenon. In this work, we analyzed the characteristics of fatigue crack propagation behavior in experiment of constant stress condition for thin sheet Al 2024-T3 alloys, and identified the retardation behavior of crack growth by comparing experimental results of thin and thick plate specimen. We attempt to operate the fatigue life estimating process using the fatigue related material constants from referred fatigue crack propagation analysis. And we analyzed the experimental and prediction results of fatigue life of thin sheet aluminum alloy in order to identify the relation between retardation behavior of fatigue crack growth and crack closure phenomenon.

Effects of Ti or Ti/TiN Underlayers on the Crystallographic Texture and Sheet Resistance of Aluminum Thin Films (Ti 또는 Ti/TiN underlayer가 Al 박막의 배향성 및 면저항에 미치는 영향)

  • Lee, Won-Jun;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The effects of the type and thickness of underlayers on the crystallographic texture and the sheet resistance of aluminum thin films were studied. Sputtered Ti and Ti/TiN were examined as the underlayer of the aluminum films. The texture and the sheet resistance of the metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For the Ti underlayer, the minimum thickness to obtain excellent texture of aluminum <111> was 10nm, and the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. TiN between Ti and Al could suppress the Al-Ti reaction, while it deteriorated the texture of the aluminum film. For the Ti/TiN underlayer, the minimum Ti thickness to obtain excellent texture of aluminum <111> was 20nm, and the minimum thickness of TiN to function as a diffusion barrier between Ti and Al was 20nm.

  • PDF

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).

Study on Thermally Properties of $250^{\circ}F$ Epoxy-Adhesive Film for Aluminum Sandwich Construction with Weight Reduction (차체경량화 알루미늄 샌드위치구조용 $250^{\circ}F$ 에폭시 접착필름 열적 특성 평가)

  • Oh Kyung-Won;Lee Sang-Jin;Jeong Jong-Cheol;Cho Sea-Hyun;Mok Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1089-1096
    • /
    • 2005
  • This study was experimental test of edgewise compression properties for aluminum(type-50XX) sandwich panel with thermal environment and surface treatment using adhesive film. There was decreasing $10\%-peel$ strength after thermal environment. Through compressive. buckling mode know to seen of properties of adhesive, sheet and core strength. First case of Chromate to aluminum sheet, know low shear strength of adhesive through buckling mode but case of Beomite to aluminum sheet, know than thin sheet and core low strength through buckling mode.

  • PDF

Ti Prepared by ionized physical vapor deposition (I-PVD) and TiN prepared by metal-organic chemical vapor deposition(MOCVD) as underlayers of aluminum TiN (Al 박막의 underlayer로서의 Ionized Physical Vapor Deposition (I-PVD) Ti 또는 I-PVD Ti/Metal-Organic Chemical Vapor Deposition TiN)

  • 이원준;나사균
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.394-399
    • /
    • 2000
  • The effects of the type and thickness of underlayer on the crystallographic texture and the sheet resistance of aluminum thin film were studied. Ti and Ti/TiN were examined as the underlayer of aluminum. Ti and TiN were prepared by ionized physical vapor deposition (I-PVD) metalorganic chemical vapor deposition (MOCVD), respectively. The texture and the sheet resistance of metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For I-PVD Ti underlayer, the excellent texture of aluminum <111> was obtained even at top of 5 nm of Ti. However, the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. MOCVD TiN between Ti and Al could suppress the Al-Ti reaction without severe degradation of aluminum <111> texture. Excellent texture of aluminum was obtained for the MOCVD TiN thinner than 4 nm.

  • PDF

Constructability of a Waterproofing Sheet Joint Combining an Aluminum Thin-film and Viscosity Layer Using a High-frequency Inductive Heating Apparatus (고주파 유도가열 장치를 이용한 알루미늄 박판 점착 복합방수시트 조인트부의 시공성)

  • Chang, Sang Mook;Kim, Yun Ho;Choi, Sung Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • Engineers in the construction field have been using bonded waterproofing sheets in an attempt to resolve the imbalance in the quality, the risk of fire, safety of workers, and environmental pollution, as well as to eliminate separate use of organic adhesives on the surface of concrete. Recently, self-laminated waterproofing sheets have been developed. The purpose of this research is to find an appropriate processing speed according to the changes in physical properties, and visual observation of the waterproofing sheets laminated by the aluminum thin-film and viscosity layer that can be attached through self-adhesiveness on the surface of concrete and waterproofing sheets. Therefore, this research is conducted using a physical performance test. Based on the result of the test, when the high-frequency inductive heating apparatus was used, an improved adhesion and bonding stability effect were confirmed after the anti-hydrostatic pressure and bond strength in the temperature condition, and the surface observation in the processing speed condition.

Weldability of Low Carbon Steel with Al Coating Condition by Nd:YAG Laser (저탄소강의 알루미늄 도금조건에 따른 Nd:YAG 레이저 용접성)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Sook-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.736-743
    • /
    • 2007
  • Laser welding has the advantage of high welding speed and Provides low heat distortion Thus laser welding is a very attractive process for joining thin steel sheet and surface treated steel sheet. And the major item in market for surface treated steel sheet is zinc coated steel. However. the laser welding of zinc coated steel is very difficult because of its low boiling point. Compared with zinc, on the other hand, aluminum has a high boiling point. Thus, laser weldability of aluminized steel is better than that of zinc coated steel. Moreover aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. The results of laser weldability of the aluminized steel for the full penetration welding will be described in this paper We focused on the investigation of the phenomenons caused by coating condition and behavior of aluminum in weld.

A comparative study of experiment and analysis of sheet matal in V-bending (V-벤딩 금형에서 박판 소재의 실험과 해석을 통한 스프링 백 비교 고찰)

  • Jeong, Gyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2021
  • When the product is removed from the mold after molding during the sheet metal molding process, elastic recovery causes a springback phenomenon. Much research has been done to minimize this phenomenon. In this study, V-bending experiments were conducted using galvanized steel sheets, stainless steel, and aluminum sheet materials, using a total of nine types of thin sheet materials of 1.0t, 1.5t, and 2.0t, respectively. Molding analysis and experimental data were compared and analyzed. In the case of galvanized steel sheets, it was considered that the springback phenomenon occurs more frequently in molding analysis than in experiments. It was considered that the springback phenomenon occurs greatly in the experiment, not the interpretation of the molding of the stainless steel plate and the aluminum plate. It was considered that the springback occurrence tendency of the molding analysis and the experiment was the same, and the springback occurrence error rate of the molding analysis and the experimental result was about 4.0%.

Recycling Technology of Aluminum UBC To Can Body Sheets

  • Lim, Cha-Yong;Kang, Seuk-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.173-178
    • /
    • 2001
  • The materials processing factors such as remelting and casting, heat treatment and microstructure, sheet rolling and can body forming in the aluminum can-to-can recycling procedure have been investigated. Aluminum used beverage can(UBC) was remelted together with virgin aluminum. The ceramic filter was used during casting to remove large impurities. As-cast microstructure was composed of large intermetallic compound (mainly $\beta$ -phase) distributed in the aluminum matrix. By heat treatment, $\beta$ -phase was transformed to $\alpha$ -phase which was also formed from $Mg_2$Si particles. The heat treated ingots were hot-rolled at 48$0^{\circ}C$ and cold-rolled to thin sheets. Can making from this thin sheets was successful and earing was measured after can making. There was a critical cold reduction rate for minimum earing. Some cracks were initiated from the impurity particles which was not removed during filtering.

  • PDF