• 제목/요약/키워드: Aluminum Extrusion

검색결과 199건 처리시간 0.024초

A Study on Lightweight Design of Double Deck High-Speed Train Hybrid Carbody Using Material Substitution and Size Optimization Method (소재대체법과 치수최적화 기법을 이용한 2층 고속열차 하이브리드 차체 구조물의 경량 설계 연구)

  • Im, Jae-Moon;Jung, Min-Ho;Kim, Jong-Yeon;Shin, Kwang-Bok
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.29-36
    • /
    • 2019
  • The purpose of this paper is to suggest a lightweight design for the aluminum extrusion carbody structure of a double deck high-speed train using material substitution and size optimization method. In order to conduct material substitution, the topology optimization was used to determine the application parts of sandwich composites at the carbody structures. The results of analysis showed that sandwich composites could be applied at roof and 2nd underframe. The size optimization was used to determine thickness of the aluminum extruded and carbon/epoxy composite. The design variable, state constraint and objective function were formulated to solve the size optimization, and then, the feasible design was presented by these conditions. The results of the lightweight design showed that the weight of double deck high-speed train hybrid carbody could be reduced by 2.18(17.70%) tons.

An Overview of The Commercialisation of The Spray Forming Process

  • Leatham, Alan
    • Journal of Powder Materials
    • /
    • 제3권4호
    • /
    • pp.227-232
    • /
    • 1996
  • (i) The development of a metallurgical bond during the spray forming of clad products has offered the possibility of manufacturing large rolls, including those used in hot and cold strip mills. Small rolls are already being produced in Japan. (ii) Technical developments, including the use-of-multi-atomizers have resulted in the elimination of porosity from the internal bore of a sprayed tube. Bimetallic tubing can also be manufactured and the installation of a 4.5 ton tube plant in the USA should provide low operation costs. (iii) Spray forming offers a potentially low cost manufacturing route for superalloy ring/casing components in high strength superalloys. (iv) A large pilot plant has been built for the spray forming of ultra-clean superalloys for turbine disc applications. (v) Using twin-atomizing technology, special steel billets have been spray formed up to 400mm diameter with deposition yields in excess of 90%. (vi) Al/Si alloy extrusion billets with excellent dimensional tolerances are being manufactured for large scale automotive applications. Several new aluminum alloys have also been developed, including high strength, low density and low cocfficient of expansion materials. (vii) New copper alloys have been developed and pilot plants are in operation to produce these alloys once markets have become established.

  • PDF

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Heat Radiation of LED Light using eu Plating Engineering Plastic Heat Sink (동도금 EP방열판에 의한 소형LED조명등 방열)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제20권1호
    • /
    • pp.81-85
    • /
    • 2011
  • Recently, the electronic parts are to be thinner plate, smaller size, light weight material and CPU, HDD and DRAM in all the parts have been produced on the basis of the high speed and greater capacity. Also, conventional goods have replaced a LED (Light-Emitting Diode) in lighting products so; such industry devices need to have cooling. To maximize all the performance on the heat-radiated products, the area of heat-radiated parts is required to be cooled for keeping the life time extension and performance of product up. Existing cooling systems are using radiant heat plate of aluminum, brass by extrusion molding, heat pipe or hydro-cooling system for cooling. There is a limitation for bringing the light weight of product, cost reduction, molding of the cooling system. So it is proposed that an alternative way was made for bringing to the cooling system. EP (Engineering Plastic) of low-cost ABS (Acrylonitrile butadiene styrene Resin) and PC (Polycarbonate) was coated with brass and the coating made the radiated heat go up. The performance of radiant heat plate is the similar to the existing part. We have studied experimentally on the radiated heat plate for the light-weight, molding improvement and low-cost. From now on, we are going to develop the way to replace the exiting plate with exterior surface of product as a cooling system.

A study on the heat treatment processing of 7050 aluminum alloy (7050Al 합금의 열처리공정 개발에 관한 연구)

  • Lee, H.S.;Nam, T.W.;Lee, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제9권2호
    • /
    • pp.139-146
    • /
    • 1996
  • The aero-industry is union industry which includes a research development type, a knowledge accumulation type and a developed country type. The aero-industry of Korea is in semi-developed type stage but departed later than that of other country such as Taiwan, Indonesia etc. Therefore, the necessity of domestic airplane material is required. This study on 7050Al extruded alloy aims to suggest an adequate heat treatment conditions of T73, T74 and T76. The results of this study show that; 1. The optimum conditions of T7x heat treatment in extruded 7050Al alloy show this; $$T73:121^{\circ}C{\times}7hr+177^{\circ}C{\times}14hr$$. $$T74:121^{\circ}C{\times}7hr+177^{\circ}C{\times}10hr$$. $$T76:121^{\circ}C{\times}7hr+163^{\circ}C{\times}21hr$$. 2. The 2nd step aging heat treatment such as T73, T74 and T76 etc. is efective in 7050Al alloy but the variation otf microstructure and mechanical property with dispersive inclusions produced for extrusion process causes some troubles. Accordingly, in order to produce a good 7050Al alloy, a careful attention is needed in manufacturing process.

  • PDF

Effects of cladding speed and preheating temperature on the productivity of AS wire (AS wire의 생산성에 미치는 클래딩속도와 예열온도의 영향)

  • Yoon J. S.;Lee S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2005
  • In recent years, there has been a growing need fur productivity improvement of ACS wire (Aluminum clad Steel wire) In optical communication market. So, it is necessary to improve the production speed and following quality of ACS wire to reduce the unit cost of the products. In this study, the pre-heating temperature and cladding speed is chosen as the factors can influence the mechanical and metallurgical properties during cladding, and the changing behavior of mechanical property and microstructure by controlling above two factors are investigated. And the bearing length and approach angle in cladding die are selected as the important elements for designing optimum die enabling high speed cladding. So we carried out FE(Finite Element) analysis using the above two elements as variables. This paper aims to understand the change of mechanical properties and microstructure according to the change of each factor during cladding and suggest the optimized cladding condition to get the best quality of OPGW. And also we would like to introduce the optimum die structure that enables high-speed cladding.

  • PDF

Effects of Drawing Parameters on Mechanical Properties of BAS121 Alloy Tubes for Heat-exchangers by High Frequency Induction Welding (고주파유도용접된 열교환기용 BAS121합금튜브의 기계적 특성에 미치는 인발조건의 영향)

  • Han Sang-Woo;Kim Byung-Il;Lee Hyun-Woo;Chon Woo-Young;Gook Jin-Seon
    • Korean Journal of Materials Research
    • /
    • 제14권12호
    • /
    • pp.851-856
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS121 welded tubes. The BAS121 aluminium alloy tubes with 25 mm in external diameter and 1.3 mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle $6.5^{\circ}$ and power input 55 kW. With increasing the reduction of area ($13,\;21\%$) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22 mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction in BAS121 alloys was estimated about $13\%$ because of the work hardening of welds.

Mechanical Properties of 2024/(Al2O3.SiC)p Composite Reinforced with Al2O3.SiC Particle Prepared by SHS Process (자전연소법으로 제조한 Al2O3.SiC 입자로 보강된2024/(Al2O3.SiC)p 복합재료의 기계적특성)

  • 맹덕영
    • Journal of Powder Materials
    • /
    • 제7권1호
    • /
    • pp.35-41
    • /
    • 2000
  • Al2O3$.$SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3$.$SiC particle was applied to 2024Al/(Al2O3$.$SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3$.$SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3$.$SiC partticle by SHS process were described. The influence of the Al2O3$.$SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 ${\mu}$m and most of the particle was smaller than 2${\mu}$m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.

  • PDF

The effect of lanthanum on the solidification curve and microstructure of Al-Mg alloy during eutectic solidification

  • Xie, Shikun;Yi, Rongxi;Guo, Xiuyan;Pan, Xiaoliang;Xia, Xiang
    • Advances in materials Research
    • /
    • 제4권2호
    • /
    • pp.77-85
    • /
    • 2015
  • The influence of rare earth lanthanum (La) on solidification cooling range, microstructure of aluminum-magnesium (Al-Mg) alloy and mechanical properties were investigated. Five kinds of Al-Mg alloys with rare earth content of La (i.e., 0, 0.5, 1.0, 1.5 and 2.0 wt.%) were prepared. Samples were either slowly cooled in furnace or water cooled. Results indicate that the addition of the rare earth (RE) La can significantly influence the solidification range, the resultant microstructure, and tensile strength. RE La can extend the alloy solidification range, increase the solidification time, and also greatly improve the flow performance. The addition of La takes a metamorphism effect on Al-Mg alloy, resulting in that the finer the grain is obtained, the rounder the morphology becomes. RE La can significantly increase the mechanical properties for its metamorphism and reinforcement. When the La content is about 1.5 wt.%, the tensile strength of Al-Mg alloy reaches its maximum value of 314 MPa.

Study on the Surface Defect Classification of Al 6061 Extruded Material By Using CNN-Based Algorithms (CNN을 이용한 Al 6061 압출재의 표면 결함 분류 연구)

  • Kim, S.B.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • 제31권4호
    • /
    • pp.229-239
    • /
    • 2022
  • Convolution Neural Network(CNN) is a class of deep learning algorithms and can be used for image analysis. In particular, it has excellent performance in finding the pattern of images. Therefore, CNN is commonly applied for recognizing, learning and classifying images. In this study, the surface defect classification performance of Al 6061 extruded material using CNN-based algorithms were compared and evaluated. First, the data collection criteria were suggested and a total of 2,024 datasets were prepared. And they were randomly classified into 1,417 learning data and 607 evaluation data. After that, the size and quality of the training data set were improved using data augmentation techniques to increase the performance of deep learning. The CNN-based algorithms used in this study were VGGNet-16, VGGNet-19, ResNet-50 and DenseNet-121. The evaluation of the defect classification performance was made by comparing the accuracy, loss, and learning speed using verification data. The DenseNet-121 algorithm showed better performance than other algorithms with an accuracy of 99.13% and a loss value of 0.037. This was due to the structural characteristics of the DenseNet model, and the information loss was reduced by acquiring information from all previous layers for image identification in this algorithm. Based on the above results, the possibility of machine vision application of CNN-based model for the surface defect classification of Al extruded materials was also discussed.