• 제목/요약/키워드: Aluminum Alloy Sheet Metals

검색결과 32건 처리시간 0.025초

ECAP 한 후 열처리한 알루미늄 AA 1050 합금 판재의 집합조직과 소성변형비 변화 (Plastic Strain Ratio and Texture of the ECAPed and Heat-treated Aluminum AA 1050 Sheet)

  • ;이민구;박병현;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.369-372
    • /
    • 2005
  • A study on the microstructure, the texture and the formability of the samples after ECAPed and subsequent heat-treated AA 1050 aluminum alloy sheet have been carried out. The specimens after the ECAP showed a very fine grain size, a decrease of <100> // ND. The <110>// ND textures appears in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has was as a parameter that expressed the formability of sheet metals. The change of the plastic Strain ratios after the ECAP and subsequent heat-treatment conditions were investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

  • PDF

알루미늄 판재의 이방성거동 예측을 위한 현상학적 모델과 결정소성학적 모델의 비교연구 (Study on Phenomenological and Crystal Plasticity Models to Predict Anisotropic Behaviors for Aluminum Alloy Sheets)

  • 정완진;윤정환
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.574-580
    • /
    • 2006
  • Anisotropy has an important effect on the strain distribution in aluminum alloy sheet forming, and it is closely related to the thinning and formability of sheet metals. Thus, the anisotropy of the material should be properly considered for the realistic analyses of aluminum sheet forming processes. For this, anisotropy can be approached in two different scales: phenomenological and microstructural (polycrystal) models. Recent anisotropic models (Yld2000-2d; Barlat et al.[1] 2003, Cuitino et al.[2] 1992) were employed in this work. For the simulation using shell element, the method which can impose plane stress condition in the polycrystal model is developed. Lankford values and yield stress ratios are calculated along various directions. As planar anisotropic behavior, a circular cup deep drawing simulation was carried out to compare the phenomenological and microstructure models in terms of earing profile.

무윤활 압연한 알루미늄 합금의 집합조직과 성형성 (Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet)

  • 아크라모프 사이드무로드;김인수
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

초고장력강과 알루미늄 합금의 판재 접합을 위한 헬리컬 SPR 설계 (Design of Helical SPR for Joining Advanced High Strength Steel and Aluminum Alloy Sheets)

  • 김동범;김관우;조해용
    • Journal of Welding and Joining
    • /
    • 제33권6호
    • /
    • pp.55-59
    • /
    • 2015
  • Self-piercing riveting (SPR) is a sheet-joining method that can be used for materials that are difficult or unsuitable for weld, such as aluminum alloys and other steel sheet metals. The increased application of lightweight materials has initiated many investigations into new SPR conditions for riveting dissimilar materials. However, buckling of the semi-tubular rivet occurs during the riveting of AHSS. In this study, a helical SPR was designed for the riveting of AHSS and Al-alloy. In addition, the reinforced helical SPR which has straight parts was designed. The riveting of AHSS and Al-alloy was simulated. Simulated results were verified by comparison with experimental ones.

비대칭 압연 알루미늄의 소성변형비 (Plastic Strain Ratios of Asymmetry Rolled Aluminum Sheets)

  • 사이드무로드 아크라모프;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.425-426
    • /
    • 2007
  • The physical and mechanical properties of the sheets metals are closely related to the presence of preferred crystallographic orientations which were produced by the manufacturing process. To obtain the aluminum alloys sheets with good Al sheet formability, the plastic strain ratio (or r-value) of AA1050 Al sheets after asymmetric rolling and subsequent heat treatment was studied. The AA1050 aluminum alloy sheets after asymmetric rolling with high reduction ratio and following heat treatment had the higher plastic strain ratio.

  • PDF

쌍롤 박판주조법으로 제조된 Al-5.5Mg-0.02Ti합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Twin-Roll Strip-Cast Al-5.5Mg-0.02Ti Alloy Sheet)

  • 천부현;한준현;김형욱;이재철
    • 대한금속재료학회지
    • /
    • 제48권5호
    • /
    • pp.387-393
    • /
    • 2010
  • High-strength aluminum alloy sheets with high magnesium contents were fabricated by a strip caster equipped with an asymmetric nozzle, which has been proven to be effective for reducing surface defects and internal segregation. 4 mm thick as-cast sheets consisting of fine dendrites and minor $Al_{8}Mg_{5}$ segregation were hot-rolled successfully to 1 mm sheets and subsequently annealed at various temperatures. The sheet revealed the tensile strength and elongation of 306 MPa and 34%, respectively, when it was rolled at 250${^{\circ}C}$ and subsequently annealed at 475${^{\circ}C}$, which exhibits the feasibility of the practical application for autobodies. The observed mechanical properties were explained on the basis of the microstructural characteristics of the alloy sheets.

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구 (제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Foming Processes for Aluminum-Alloy Sheet Metals(Part 1. Experiment))

  • 류호연;김영은;김종호;구본영;금영탁
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.152-159
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5020-H32 for improving deep drawability. Experiments for producing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shapes. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5020-H32 sheet, whereas LDR of 2.25 in case of A1050-H16, could be obtained and the former was 1.4 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5020-H32 material was also about 1.92 times deeper than the depth drawn at room temperature. The effects of blank shape and forming temperature on drawability as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

평면이방성 박판성형공정의 3차원 유한요소해석 (3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal)

  • 이승열;금영탁;박진무
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

초고장력강과 알루미늄 합금의 접합을 위한 SPR 설계 (Design of self-piercing rivet to joint in advanced high strength steel and aluminium alloy sheets)

  • 김동범;추연근;조해용
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.75-80
    • /
    • 2015
  • Self-piercing riveting is an joining method of advanced high strength steels (AHSS) and other dissimilar materials. It has attracted considerable interest from the automotive industry. The SPR has become an interesting alternative joining technique for difficult to weld materials such as steels and aluminium alloys. In this paper, self-piercing rivet and anvil for SPR were designed for the joining conditions with AHSS and aluminium alloy. Various conditions of SPR were simulated for the design of rivets and anvils. The simulated results were in good agreement with experimental ones. As a result, over HV500 rivet is desirable to joint SPFC780 AHSS and aluminum alloy.

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구(제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals. (Part 1. Experiment))

  • 류호연;배원택;김종호;김성민;구본영;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.45-52
    • /
    • 1998
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5052-H32 for improving deep drawability. Experiments for procucing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shape. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5052-H32 sheet, whereas LDR of A1050-H16 is 2.25, could be obtained and the former was 8 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5052-H32 material was also about 2 times deeper than the depth drawn at room temperature. The effects of blank shape, and temperature on drawability of aluminum materials as well as thickness distribution of drawn cups were examined and discussed.

  • PDF