• 제목/요약/키워드: Aluminum(Al)

검색결과 2,494건 처리시간 0.031초

극저온 열처리된 Al7075-T6의 선삭특성 분석 (Estimation of Machinability Turning Process for Al7075-T6 by Cryogenic Heat Treatment)

  • 임학진;오정규;김평호;이종환;김정석
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.865-870
    • /
    • 2013
  • In recent years, aluminum processing has been increasing in the aerospace, vehicle, airplane industries etc., because aluminum has abundant resources and has a high specific strength. Aluminum alloys have a high coefficient of thermal expansion therefore, it is necessary to consider the temperature problem in the cutting process. The objective of this research is to investigate the machinability of a hardened aluminum alloy Al7075-T6 by using cryogenic heat treatment. The machining test is conducted by comparing the cutting force and surface roughness, corresponding to various cutting conditions of depth of cut, cutting speed, and feed rate, with those of Al7075-T0.

균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향 (Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation)

  • 최동욱;박병기;이정민
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험 (3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys)

  • 송용욱;김정준;박수원;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

The Effect of Fluoride and Aluminum on Bone Turnover in Mouse Calvarial Culture

  • Ahn, Hye-Won
    • Toxicological Research
    • /
    • 제14권2호
    • /
    • pp.163-169
    • /
    • 1998
  • Fluoride (F), over a narrow concentration range, increases bone formation. Aluminum (Ai) too is biphasic in its action on bone, being mitogenic at very low levels and inhibitory at higher levels. Both F and Al are present in finished drinking water where the chemical interaction of these two agents is well characterized. F and AI, given individually, accumulate preferentially in bone. In addition. in vivo studies have shown that F causes the co-accumulation of Al in bone. Thus, it was necessary to determine the interactive effect of these two agents on bone mitogenesis. Calvaria were obtained from neonatal CD-1 mice and cultured with various concentrations of F (0.05~19 ppm) as NaF, Al (2 ppb~2 ppm) as $AlCl_3$ , or F and Al for 3 days at $37^{\circ}C$ on a rotating roller drum. Alkaline phosphatase activity in calvaria and $\beta$-glucuronidase activity in culture medium were determined as a measures of bone turnover. Alkaline phosphatase activity in calvaria was significantly increased by F (0.05~2 ppm) treatment and $\beta$-glucuronidase activity was slightly increased in the culture medium of calvaria treated with 0.3 ppm Al. The combination of 19 ppm F and 0.3 ppm Al increased alkaline phosphatase activity in calvaria, but did not affect $\beta$-glucuronidase activity, suggesting the interactive effect of fluoride and aluminum on bone turnover.

  • PDF

알루미늄의 브레이징과 원리 (Aluminum Brazing and Its Principle)

  • 이순재;정도현;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제24권4호
    • /
    • pp.1-7
    • /
    • 2017
  • Aluminum alloys have been widely used in many fields such as electronic, structure, aero-space and vehicle industries due to their outstanding thermal and electrical conductivity as well as low cost. However, they have some difficulties for using in brazing process because of the strong oxide layer of $Al_2O_3$ on the surface of Al alloy. In addition, their melting point is similar to that of brazing filler metal resulting in thermal damage of Al alloys. Therefore, it is very important to understand the brazing principles, filler metal and its properties such as wetting, capillary flow and dissolution of base metal in the Al brazing process. This paper reviews the brazing principles, aluminum alloys, and brazing fillers. In the case of brazing principle, some formula was used for calculation of capillary force and the dissolution to obtain the best condition of Al brazing. In addition, the advanced research trends in Al brazing were introduced including thermal treatment, additive for improving property and decreasing melting point in Al brazing process.

화학기상공정을 이용한 나노질화알루미늄 분말 합성 (Synthesis of Nano-size Aluminum Nitride Powders by Chemical Vapor Process)

  • 피재환;박종철;김유진;황광택;김수룡
    • 한국분말재료학회지
    • /
    • 제15권6호
    • /
    • pp.496-502
    • /
    • 2008
  • Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the $AlCl_{3}-NH_{3}-N_{2}$ system. Aluminum chloride ($AlCl_3$) as the starting material was gasified in the heating chamber of $300^{\circ}C$. Aluminum chloride gas transported to the furnace in $NH_{3}-N_{2}$ atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and $1200^{\circ}C$, the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.

자전 고온 합성법에 의한 질화 알루미늄 휘스커의 제조 (Fabrication of AlN Whiskes by Self-propagating High-temperature Synthesis)

  • 이경재;장영섭;김석윤;김용석
    • 한국세라믹학회지
    • /
    • 제32권8호
    • /
    • pp.931-937
    • /
    • 1995
  • AlN powder and whiskers were synthesized by direct nitridation of aluminum powder in pure nitrogen atmosphere. The nitridation reaction of aluminum powder was initiated by heating the sample to the ignition temperature and the reaction was finished in less than 3 minutes. AlN whisker-shaped morphology was observed predominantly when the sample was heated above 90$0^{\circ}C$.

  • PDF

졸-겔법에 의한 여러 상의 고순도 Alumina 제조에 관한 연구 (A Study on the Preparation of Various Phase Alumina in High Purity by Sol-Gel Method)

  • 황규민;박승수;이희철
    • 대한화학회지
    • /
    • 제33권2호
    • /
    • pp.263-270
    • /
    • 1989
  • 금속알루미늄 조각과 alcohols을 반응시켜 Al-alkoxides를 합성하였으며 이것을 가수분해하여 얻은 Al-hydroxides와 시약 AlCl3로부터 얻은 Al-hydroxides를 여러 온도에서 소성하여 여러 상의 고순도 $Al_2O_3$를 제조하였다. 제조한 ${\gamma}$${\eta}$상 알루미나의 촉매적 특성을 알아보았고, $Al(OH)_3$로부터 ${\alpha}-Al_2O_3$의 생성과정을 속도론적으로 고찰하였다.

  • PDF

펄스레이저법으로 증착 제조된 AlN박막의 타겟 효과 (Effect of Targets on Synthesis of Aluminum Nitride Thin Films Deposited by Pulsed Laser Deposition)

  • 정준기;하태권
    • 소성∙가공
    • /
    • 제29권1호
    • /
    • pp.44-48
    • /
    • 2020
  • Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.

Borate 완충용액에서 알루미늄의 산화피막의 생성과정과 전기적 성질에 대한 대기의 영향 (Atmospheric Effects on Growth Kinetics and Electronic Properties of Passive Film of Aluminum in Borate Buffer Solution)

  • 김연규
    • 대한화학회지
    • /
    • 제60권3호
    • /
    • pp.169-176
    • /
    • 2016
  • Borate 완충용액에서 Al의 부식과 부동화에 관하여 변전위법, 대 시간 전류법 그리고 다중 주파수 전기화학적 임피던스 측정법으로 조사하였다. 공기 또는 산소의 영향은 환원과정에 영향을 주었지만 산화반응에는 영향을 미치지 못 하는 것으로 보인다. 부동화 영역에서 생성되는 피막의 전기적 성질은 Mott-Schottky 식이 적용되는 n-type 반도체 성질을 보였다. 낮은 전극전위에서 생성되는 Al의 산화피막은 Al(OH)3로 충분한 부동화 효과를 보이지 못하나, 전극전위가 증가하면서 Al2O3로 변하였다. Al2O3 피막은 “전기장에 의한-이온의 이동” 과정에 의하여 성장하는 것으로 보인다.