• Title/Summary/Keyword: Alumina oxide

Search Result 292, Processing Time 0.031 seconds

Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics (기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향)

  • Choi, Young-Hoon;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

Development of ELID Monitoring System and its Application to ELID Grinding of Structural Ceramics (ELID 연삭 모니터링 시스템의 개발과 구조 세라믹스 적용 사례)

  • Kwak, Tae-Soo;Kim, Gyung-Nyun;Kwak, Ihn-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1245-1251
    • /
    • 2013
  • This study has focused on development of ELID monitoring system and its application to ELID grinding of structural ceramics. ELID monitoring system was consisted of grinding equipment, ELID power supply, grinding wheel, electrode and monitoring program. It can give a real time data to check spindle grinding resistance, wheel revolution, dressing current and voltage in ELID grinding process. The performance of developed system was evaluated by applying to grinding of structural ceramics, silicon carbide and alumina. As the results of experiments, monitored data for spindle resistance and ELID dressing current was useful to check steady-state ELID grinding process. From the comparison of spindle resistance between ELID grinding and conventional grinding process according to change of depth of cut, it could be confirmed that the spindle resistance in ELID grinding was lower than conventional grinding process.

Composite Membrane Containing a Proton Conductive Oxide for Direct Methanol Fuel Cell

  • Peck, Dong-Hyun;Cho, Sung-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Kim, Jeong-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2008
  • The composite membrane for direct methanol fuel cell (DMFC) was developed using $H_3O^+-{\beta}"-Al_2O_3$ powder and perfluorosulfonylfluroride copolymer (Nafion) resin. The perfluorosulfonylfluroride copolymer (Nafion) resin was mixed with $H_3O^+-{\beta}"-Al_2O_3$ powder and it was made to sheet form by hot pressing. The electrodes were prepared with 60 wt% PtRu/C and 60wt% Pt/C catalysts for anode and cathode, respectively. The morphology and the chemical composition of the composite membrane have been investigated by using SEM and EDXA, respectively. The composite membrane and $H_3O^+-{\beta}"-Al_2O_3$ were analyzed by using FT-IR and XRD. The methanol permeability of the composite membranes was also measured by gas chromatography (GC). The performance of the MEA containing the composite membrane (2wt% $H_3O^+-{\beta}"-Al_2O_3$) was higher than that of normal pure Nafion membrane at high operating temperature (e.g. $110^{\circ}C$), due to the homogenous distribution of $H_3O^+-{\beta}"-Al_2O_3$, which decreased the methanol permeability through the membrane and enhanced the water contents in the composite membrane.

Capacitance Properties of Nano-Structure Controlled Alumina on Polymer Substrate (폴리머 기판위에 형성된 나노구조제어 알루미나의 캐패시터 특성)

  • Jung, Seung-Won;Min, Hyung-Sub;Han, Jeong-Whan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Embedded capacitor technology can improve electrical perfomance and reduce assembly cost compared with traditional discrete capacitor technology. To improve the capacitance density of the $Al_2O_3$ based embedded capacitor on Cu cladded fiber reinforced plastics (FR-4), the specific surface area of the $Al_2O_3$ thin films was enlarged and their surface morphologies were controlled by anodization process parameters. From I-V characteristics, it was found that breakdown voltage and leakage current were 23 V and $1{\times}10^{-6}A/cm^2$ at 3.3 V, respectively. We have also measured C-V characteristics of $Pt/Al_2O_3/Al/Ti$ structure on CU/FR4. The capacitance density was $300nF/cm^2$ and the dielectric loss was 0.04. This nano-porous $Al_2O_3$ is a good material candidate for the embedded capacitor application for electronic products.

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Karunakaran, Gopalu;Suriyaprabha, Rangaraj;Rajendran, Venkatachalam;Kannan, Narayanasamy
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.243-255
    • /
    • 2015
  • In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

An Optimization of Tungsten Plug Chemical Mechanical Polishing(CMP) using the Different Sets of Slurry and Pad (슬러리와 패드변화에 따른 텅스텐 플러그 CMP 공정의 최적화)

  • 김상용;서용진;이우선;이강현;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.568-574
    • /
    • 2000
  • We have been optimized tungsten(W) plug CMP(chemical mechanical polishing) characteristics using two different kinds of component of slurry and two different kinds of pad which have different hardness. The comparison of oxide film roughness on around W plug after polishing has been carried out. And W plug recess for consumable sets and dishing effect at dense area according to the rate of over-polishing has been investigated. Also the analysis of residue on surface after cleaning have been performed. As a experimental result we have concluded that the consumable set of slurry A and hard pad was good for W plug CMP process. After decreasing the rate of chemical reaction of silica slurry and adding two step buffering we could reduce the expanding of W plug void however we are still recognizing to need a more development for those kinds of CMP consumables.

  • PDF

Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction (압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험)

  • Kim, Y.B.;Lee, J.S.;Lee, S.M.;Park, H.J.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

The Response time of the Hydrogen Peroxide Monopropellant Thruster as Different Catalysts (서로 다른 촉매를 사용하는 과산화수소 추력기의 응답 속도)

  • An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.371-374
    • /
    • 2008
  • The performance of several catalysts to decompose the high test peroxide (HTP) was described in this paper. Manganese oxide, Platinum and Iridium were coated on the gamma alumina. The response time of various catalysts was measured with a 50 Newton class thruster. Ir/$Al_2O_3$ that showed the fastest response time at the thruster, failed the reaction when continuous mode test was carried out with the thruster. Pt/$Al_2O_3$ and MnO_2/Al_2O_3$ can be substitutes to decompose the HTP. In addition, for larger thruster, MnO_2/Al_2O_3$ can be a good catalyst because its cost is below 5 % of Pt/$Al_2O_3$.

  • PDF