• Title/Summary/Keyword: Alumina Particle

Search Result 300, Processing Time 0.028 seconds

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: II. Preparation and Coating Characteristics of Nanoparticulate $TiO_2$ Sols (기체분리용 세라믹 복합분리막의 개발: II. 극미세 입자 $TiO_2$ 졸의 제조 및 코팅 특성)

  • 현상훈;박준수;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.739-749
    • /
    • 1992
  • The sols prepared by dialyzing solutions, in which the hydrolyzed precipitates of TEOT or directly Ti(OC3H7)4 were resolved, were the nanoparticulate sol with the average particle size less than 7 nm and the anatase crystal phase. In the pH range of 1.5 to 2.9, the particle size of the nanoparticulate TiO2 sols (0.09 mol/ι) increased gradually upto 15 nm~26nm with the increase of pH in the initial aging state but the sols were transparent all the time, and stable without growin any more after 30 days. When the slipcasted porous alumina tubes were coated by the sol-gel dipping method, the minimum particle size and the aging time for forming the coated gel layer at the given pH were optimized. For obtaining the very thin crack-free and reproducible membrane coating, the use of a nanoparticulate TiO2 sol (0.09 mol/ι) aged for about 30 dyas at pH=2.0 was found to be the best.

  • PDF

Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites

  • Kim, Bo-Yeon;Lee, Yoonjoo;Kim, Soo-Ryong;Shin, Dong-Geun;Kwon, Woo-Teck;Choi, Duck-Kyun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.248-252
    • /
    • 2015
  • Natural materials often have unique mechanical properties, such as the hierarchical structure of nacre formed through mineral bridges or asperities created between an inorganic particle and a natural-layer surface. As these asperities produce an exceptional shear resistance, in this study, we aimed to emulate the natural structure of nacre by synthesizing inorganic asperities and mineral bridges with different temperatures in the range of $1100-1300^{\circ}C$ and clay contents from 10 - 50 wt%. Following the infiltration of methyl methacrylate, we measured the mechanical properties to assess whether they were improved by the asperities. It was confirmed that the asperities improved the bending strength by 10%, and the anchoring effect was observed on the fracture surface.

Fabrication of Porous Al2O3 Film by Freeze Tape Casting (냉동 후막 성형에 의한 다공성 Al2O3 필름 제조)

  • Shin, Ran-Hee;Koo, Jun-Mo;Kim, Young-Do;Han, Yoon-Soo
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.438-442
    • /
    • 2015
  • Porous thick film of alumina which is fabricated by freeze tape casting using a camphene-camphor-acrylate vehicle. Alumina slurry is mixed above the melting point of the camphene-camphor solvent. Upon cooling, the camphene-camphor crystallizes from the solution as particle-free dendrites, with the $Al_2O_3$ powder and acrylate liquid in the interdendritic spaces. Subsequently, the acrylate liquid is solidified by photopolymerization to offer mechanical properties for handling. The microstructure of the porous alumina film is characterized for systems with different cooling rate around the melting temperature of camphor-camphene. The structure of the dendritic porosity is compared as a function of ratio of camphene-camphor solvent and acrylate content, and $Al_2O_3$ powder volume fraction in acrylate in terms of the dendrite arm width.

Effect of Multi-Sized Powder Mixture on Solid Casting and Sintering of Alumina

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.352-357
    • /
    • 2018
  • The slip casting process is widely used to make green bodies from ceramic slips into dense compacts with homogeneous microstructure. However, stress may be generated inside the green body during drying, and can lead to cracking and bending during sintering. When starting from the spherical powders with mono-size distribution to make the close packed body, interstitial voids on octahedral and tetrahedral sites are formed. In this research, experiments were carried out with powders of three size types (host powder (H), octahedral void filling powder (O) and tetrahedral void filling powder (T)) controlled for average particle size by milling from two commercial alumina powders. Slips were prepared using three different powder batches from H only, H+O or H+O+T mixed powders. After manufacturing green compacts by solid-casting, compacts were dried at constant temperature and humidity and sintered at $1650^{\circ}C$. Alumina samples fabricated from the multi-sized powder mixture had improved compacted and sintered densities.

LABORATORY SIMULATION OF LIGHT SCATTERING FROM REGOLITH ANALOGUES: EFFECT OF POROSITY

  • KAR, AMRITAKSHA;DEB, SANJIB;SEN, A.K.;GUPTA, RANJAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.65-67
    • /
    • 2015
  • The surfaces of most atmosphereless solar system objects are referred to as regolith, layers of loosely connected fragmentary debris, produced by meteorite impacts. Measurements of light scattered from such surfaces provides information about the composition and structure of the surface. A suitable way to characterize the scattering properties is to consider how the intensity and polarization of scattered light depends on the particle size, composition, porosity, roughness, wavelength of incident light and the geometry of observation. In the present work, the effect of porosity on bidirectional reflectance as a function of phase angle is studied for alumina powder with grain size of $0.3{\mu}m$ and olivine powder with grain size of $49{\mu}m$ at 543.5 nm. The optical constants of the alumina sample for each porosity were calculated with Maxwell Garnett effective medium theory. On using each of the optical constants of alumina sample in Mie theory with the Hapke model the variation of bidirectional reflectance is obtained as a function of phase angle with porosity as a parameter. Experimental reflectance data are in good agreement the model. For the olivine sample the effect of porosity is studied using Hapke (2008).

The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core

  • Kulunk, Tolga;Kulunk, Safak;Baba, Seniha;Ozturk, Ozgur;Danisman, Sengul;Savas, Soner
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.382-387
    • /
    • 2013
  • PURPOSE. Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 ${\mu}m$ aluminum oxide particles ($Al_2O_3$), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + Al coating and air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (${\alpha}$=.05). RESULTS. The highest bond strengths were obtained by air abrasion with 50 ${\mu}m$ $Al_2O_3$, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION. Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.

Slurry Characteristics by Surfactant Condition at Copper CMP (구리 CMP 공정시 계면활성제 첨가 조건에 의한 슬러리 특성)

  • Kim, In-Pyo;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.166-169
    • /
    • 2003
  • In this study, we evaluated the characteristics by the addition of 3 different kinds of nonionic surfactant to improve the dispersion stability of slurries. Slurry stability is an issue in any industry in which settling of particles can result in poor performance. So we observed the variation of particle size and settling rate when the concentration and addition time of surfactant are changed. When the surfactant is added after milling process, the particle size and pH became low. It is supposed that the particle agglomeration was disturbed by adsorption of surfactant on alumina abrasive. The settling rate was relatively stable when nonionic surfactant is added about 0.1~1.0 wt%. When molecular weight(MW) is too small like Brij 35, it was appeared low effect on dispersion stability. Because it can't prevent coagulation and subsequent settling with too small MW. The proper quality of MW for slurry stability was presented about 500,000. Consequently, the addition of nonionic surfactant to alumina slurry has been shown to have very good effect on slurry stabilization. If we apply this results to copper CMP process, it is thought that we will be able to obtain better yield.

  • PDF

Effect of $Al_2O_3$ Particle Size on Thermal Properties of Glass-Ceramics for LTCC Material (저온동시소성용 결정화 유리의 필러 사이즈가 열적 특성에 미치는 영향)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.281-281
    • /
    • 2007
  • Low Temperature Co-fired Ceramic (LTCC) technology has been used in electronic device for various functions. LTCC technology is to fire dielectric ceramic and a conductive electrode such as Ag or Cu thick film below the temperature of $900^{\circ}C$ simultaneously. The glass-ceramic has been widely used for LTCC materials due to its low sintering temperature, high mechanical properties and low dielectric constants. To obtain the high strength, addition of filler, the microstructure should have various crystals and low pores in a composite. In this study, two glass frits were mixed with different alumina size(0.5, 2, 3.7um) and sintered at the range of $850{\sim}950^{\circ}C$. The microstructure, crystal phases, thermal and mechanical properties of the composites were investigated using FE-SEM, XRD, TG-DTA, Dilatomer. When the particle size of $Al_2O_3$ filler increased, the starting temperatures for the densification of the sintered bodies, onset point of crystallization, peak crystallization temperature in the glass-ceramic composites decreased gradually. After sintered at $900^{\circ}C$, the glass frits were crystallized as $CaAl_2Si_2O_8\;and\;CaMgSi_2O_6$. The purpose of our study is to understand the relationship between the $Al_2O_3$ particle size and thermal properties in composites.

  • PDF

Effect of Fine Alumina Filler Addition on the Thermal Conductivity of Non-conductive Paste (NCP) for Multi Flip Chip Bonding (멀티 플립칩 본딩용 비전도성 접착제(NCP)의 열전도도에 미치는 미세 알루미나 필러의 첨가 영향)

  • Jung, Da-Hoon;Lim, Da-Eun;Lee, So-Jeong;Ko, Yong-Ho;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.11-15
    • /
    • 2017
  • As the heat dissipation problem is increased in 3D multi flip chip packages, an improvement of thermal conductivity in bonding interfaces is required. In this study, the effect of alumina filler addition was investigated in non-conductive paste(NCP). The fine alumina filler having average particles size of 400 nm for the fine pitch interconnection was used. As the alumina filler content was increased from 0 to 60 wt%, the thermal conductivity of the cured product was increased up to 0.654 W/mK at 60 wt%. It was higher value than 0.501 W/mK which was reported for the same amount of silica. It was also found out that the addition of fine sized alumina filler resulted in the smaller decrease in thermal conductivity than the larger sized particles. The viscosity of NCP with alumina addition was increased sharply at the level of 40 wt%. It was due to the increase of the interaction between the filler particles according to the finer particle size. In order to achieve the appropriate viscosity and excellent thermal conductivity with fine alumina fillers, the highly efficient dispersion process was considered to be important.