• Title/Summary/Keyword: Altitude Effects

Search Result 263, Processing Time 0.024 seconds

The Reynolds Number Effects on the Projectile with an Altitude Change (고도에 따른 발사체의 레이놀즈수 영향성 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Lee, Young-Min;Cho, Tae-Hwan;Myong, Rho-Shin;Park, Chan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.683-688
    • /
    • 2009
  • A research was conducted about the Reynolds number effect on the projectile with an altitude change. The atmosphere conditions change in accordance with an altitude change. It effects the Reynolds number. To confirm how the phenomena affect the trajectory of the projectile, a computer program is designed with an altitude and a range considered. The MISSILE DATCOM which is based on the semi-empirical method was utilized to get aerodynamic coefficients. The result shows that the Reynolds number considerably changes as the altitude change. It causes to change the drag coefficient of the projectile. As the Reynolds number decreases, the skin friction drag increases significantly. It causes to decrease the maximum altitude and the range.

A Methodology for Rain Gauge Network Evaluation Considering the Altitude of Rain Gauge (강우관측소의 설치고도를 고려한 강우관측망 평가방안)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.113-124
    • /
    • 2014
  • The observed rainfall may be different along with the altitude of rain gauge, resulting in the fact that the characteristics of rainfall events occurred in urban or mountainous areas are different. Due to the mountainous effects, in higher altitude, the uncertainty involved in the rainfall observation gets higher so that the density of rain gauges should be more dense. Basically, a methodology for the rain gauge network evaluation, considering this altitude effect of rain gauges can account for the mountainous effects and becomes an important step for forecasting flash flood and calibrating of the radar rainfall. For this reason, in this study, we suggest a methodology for rain gauge network evaluation with consideration of the rain gauge's altitude. To explore the density of rain gauges at each level of altitude, the Equal-Altitude-Ratio of the density of rain gauges, which is based on the fixed amount of elevation and the Equal-Area-Ratio of the density of rain gauges, which is based on the fixed amount of basin area are designed. After these two methods are applied to a real watershed, it is found that the Equal-Area-Ratio generates better results for evaluation of a rain gauge network with consideration of rain gauge's altitude than the Equal-Altitude-Ratio does. In addition, for comparison between the soundness of rain gauge networks in other watersheds, the Coefficient of Variation (CV) of the rain gauge density by the Equal-Area-Ratio is served as the index for the evenness of the distribution of the rain gauge's altitude. The suggested method is applied to the five large watersheds in Korea and it is found that rain gauges installed in a watershed having less value of the CV shows more evenly distributed than the ones in a watershed having higher value of the CV.

Alterations in hematological parameters in Republic of Korea Air Force pilots during altitude chamber flight (저압실 비행 훈련이 대한민국 공군 조종사의 혈액 성분에 미치는 영향)

  • Kim, Hyun-Soo;Jeon, Eun-Ryoung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • An altitude chamber, also known as a hypobaric chamber, is a device used during aerospace or high terrestrial altitude research or training to simulate the effects of high altitude on the human body. Although data from altitude chamber researches using experimental animals have been accumulated, studies in the humans exposed to hypobaric conditions are seldomly reported. Despite the importance of altitude chamber flight training in the field of aviation physiology, the hematological analysis of post-flight physiological changes has rarely been performed. The aims of the present study were to investigate the alterations in blood components during altitude chamber flight and to determine whether the differences between pre- and post-flight values are significant. Sixty experienced pilots in the Republic of Korea Air Force were enrolled in the altitude chamber flight training. Venous blood samples were obtained before and immediately after the flight. Compared with the pre-flight values($6.32{\times}10^3/mm^3$, $5.02{\times}10^6/mm^3$, 15.61 g/dL, respectively), white blood cell count, red blood cell count and hemoglobin level were significantly increased after the flight($6.77{\times}10^3/mm^3$, $5.44{\times}10^6/mm^3$, 16.26 g/dL; p=0.006, p=0.012, p<0.001, respectively). These alterations may be attributable to the exposure to hypobaric hypoxia, 100% oxygen supply for denitrogenation, considerable rise and fall in altitude and psychophysical stress due to these factors. In further studies, experimental groups and methods should be individualized to ensure objectivity and diversification. In addition, multiple time-frame analyses regarding the changing pattern of each blood component are also required to elucidate the physiological process for adapting to the high terrestrial altitude exposure.

On the Management of Nutrition for High Altitude Training (고지(高地) 훈련시(訓練時) 영양관리(營養管理)에 관(關)하여)

  • Sung, N.E.;Lee, C.H.
    • Journal of Nutrition and Health
    • /
    • v.1 no.1
    • /
    • pp.27-31
    • /
    • 1968
  • The author investigated the effects of dietary composition upon the work efficiency of Splague Dowley rat at high altitude, and obtained the following results: 1. At high altitude a carbohydrate-rich diets worked more favorably upon work efficiency of the animal then a protein and or fat-rich diets did. 2. It may be recommended that fibrous components be excluded from the diets. 3. Ingestion of large amounts of sugars prior to the onset of work load is highly recommended.

  • PDF

Altitude Effects on the Combustion of the Solid Fuel Ramjet

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.476-479
    • /
    • 2008
  • The combustion efficiency of the solid fuel ramjet is affected by the inlet air temperature. And this inlet air temperature is dependent on the flight Mach number and the environment air temperature. If the flight altitude is changeable, the inlet air temperature and the air density also vary. The performance efficiency is investigated with this variables related to the combustion efficiency.

  • PDF

Varietal Difference in Growth, Yield and Grain Quality of Rice Grown at Different Altitudinal Locations

  • Kwon Young-Rip;Lee Jin-Jae;Choi Dong-Chil;Choi Joung-Sik;Choi Yeong-Geun;Yun Song-Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.130-136
    • /
    • 2006
  • Growth and quality of rice are affected by various factors including the location of cultivation. This study was conducted to investigate the effects of altitudinal locations on the growth and yield-related components of rice. Nineteen Japonica type varieties were grown at Iksan (altitude, 10 m), Imsil (altitude, 150 m), Jinan (altitude, 275 m) and Jangsu (altitude, 430 m) at a similar latitude in Jeonbuk province in the south western Korea. Minimum air temperature showed a strong negative correlation with altitude. The morphological traits and yield-and quality-related components were analyzed. Longer days to heading was required at higher altitudes. However, culm length, panicle length, panicle number, grain number and rice yield were reduced at higher altitudes. Protein content of brown rice increased but fatty acid content decreased at higher altitudes. Amylose content was affected by neither the altitude nor the ecotype. Palatability of polished rice tends to be improved at higher altitudes and in early-maturing ecotypes but its relationships with altitude and ecotype were not significant. Head rice ratio was lower at higher altitudes but broken rice ratio vise versa. These results indicate that growth and quality of rice are affected significantly by changes in temperatures at the locations of different altitude. Also, the characters related to yield and quality of rice often respond incompatibly to the changes in altitudes. These results could provide valuable information for the strategic planning of rice production in geographically diverse areas.

Modeling of Engine Intake Pressure for Predicting Braking Performance Affected by Altitude (고도에 따른 제동 성능 예측을 위한 엔진 흡기압 모델링)

  • An, Kwangman;Lee, Jisuk;Park, Jinil;Lee, Jonghwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.228-233
    • /
    • 2014
  • Reduction of the atmospheric pressure in high altitude affects brake booster system which was operated by the difference between the intake pressure and the atmospheric pressure. So, braking system can not stably perform due to decrease of brake boost pressure. In this study, effects of altitude change on engine intake pressure was analyzed by prediction model of engine intake pressure which was studied previously. And engine intake pressure was simulated by simulation model in various driving conditions and environmental conditions.

Numerical Prediction of the Base Heating due to Rocket Engine Clustering (로켓엔진 병렬화에 의한 저부가열의 수치적 예측)

  • Kim Seong Lyong;Kim Insun
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.

Reliability of Measurement Estimation in Altitude Engine Test (엔진 고도 시험의 측정 신뢰성 평가)

  • Lee, Jin-Kun;Yang, In-Young;Yang, Soo-Seok;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • The altitude engine test is a sort of engine performance tests carried out to measure the performance of a engine at the simulated altitude and flight speed environments prior to that at the flight test. During the performance test of a engine, various values such as pressures and temperatures at different positions, air flow rate, fuel flow rate, and the load by thrust are measured. These measured values are used to derive the representative performance values such as the net thrust and the specific fuel consumption through a momentum equation. Hence each of the measured values has certain effects on the total uncertainty of the performance values. In this paper, the combined standard uncertainties of the performance variables at the engine test were estimated by the uncertainty analysis of the measurement values and the repeatability and reproducibility of the altitude test measurement were assessed by the analysis of variation on the repeated test data with different operator groups.

  • PDF