• Title/Summary/Keyword: Altimeter

Search Result 154, Processing Time 0.032 seconds

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

Antarctic Sea Ice Distribution from Integrated Microwave Sensings

  • Hwang, Jong-Sun;Yoon, Ho-Il;Min, Kyung-Duck;Kim, Jeong-Woo;Hong, Sung-Min
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.633-633
    • /
    • 2002
  • We investigated the distributions of sea ice using various microwave remote sensing techniques in the part of Drake passage, Antarctica, between the area 45-75$^{\circ}$W and 55-66$^{\circ}$S. We used Topex/Poseidon(T/P) radar altimeter, ERS-1 altimeter, ERS-2 scatterometer, Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), and DMSP Special Sensor Microwave/Imager(SSM/I) data. The sea ice distributions were estimated between May and Jun., 1995 and Oct. and Nov., 1998. The two altimeter measurements (T/P and ERS-1) showed good coherence with the results from the radiometer data in the given period when the ice concentration of 20% and greater was selected. The scatterometer data also showed good correlation with altimetry-implied sea ice surface. The maximum and minimum values of sea ice distribution were appeared in Aug. and Feb., respectively. In general, the sea ice distributions estimated from radar altimeter, radioneter, and scatterometer are well correlated.

  • PDF

Development of an Efficient Processor for SIRAL SARIn Mode

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.335-346
    • /
    • 2010
  • Recently, ESA (European Space Agency) has launched CryoSAT-2 for polar ice observations. CryoSAT-2 is equipped with a SIRAL (SAR/interferometric radar altimeter), which is a high spatial resolution radar altimeter. Conventional altimeters cannot measure a precise three-dimensional ground position because of the large footprint diameter, while SIRAL altimeter system accomplishes a precise three-dimensional ground positioning by means of interferometric synthetic aperture radar technique. In this study, we developed an efficient SIRAL SARIn mode processing technique to measure a precise three-dimensional ground position. We first simulated SIRAL SARIn RAW data for the ideal target by assuming the flat Earth and linear flight track, and second accessed the precision of three-dimensional geopositioning achieved by the proposed algorithm. The proposed algorithm consists of 1) azimuth processing that determines the squint angle from Doppler centroid, and 2) range processing that estimates the look angle from interferometric phase. In the ideal case, the precisions of look and squint angles achieved by the proposed algorithm were about -2.0 ${\mu}deg$ and 98.0 ${\mu}deg$, respectively, and the three-dimensional geopositioning accuracy was about 1.23 m, -0.02 m, and -0.30 m in X, Y and Z directions, respectively. This means that the SIRAL SARIn mode processing technique enables to measure the three-dimensional ground position with the precision of several meters.

Ground Altitude Computation Algorithm using Laser Altimeter and GPS for UAV Automatic Take-off and Landing (레이저 고도계 및 GPS를 이용한 무인기의 자동이착륙용 지면고도계산 알고리듬 설계)

  • Cho, Sangook;Choi, Keeyoung;Kim, Sung-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • This paper presents a ground altitude determination algorithm using a laser altimeter and GPS for automatic take-off and landing of UAV. The characteristics of the laser altimeter was analyzed in ground tests and a low-pass filter was designed to reduce the effect of signal interruption due to reflectivity problem. The paper shows that a single sensor cannot measure ground altitude appropriately in terms of reliability and accuracy. To complement shortcomings of the laser altimeter, the linear Kalman filter was designed using DGPS vertical speed. Designed filter was validated and tuned through the steps of simulation, ground test and flight test. It was confirmed that the accuracy for automatic landing is achievable.

Distribution of Antarctic Sea Ice from Satellite Altimetry in the Weddell Sea: Preliminary Results

  • Kim, Jeong-Woo;Hong, Sung-Min;Hwang, Jong-Sun;Yoon, Ho-Il;Lee, Bang-Yong;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.255-261
    • /
    • 2002
  • We investigated the distribution of sea ice using Topex/Poseidon (T/P) and ERS-1 .ada. altimeter data in the northwest Weddell Sea, Antarctica, between the area $45-75^{\circ}W\;and\;55-66^{\circ}S$. Using the Geo_Bad_1 flag of the Merged GDR of the T/P, we classified the surface into ocean, land, and sea. Total 257 cycles of altimeter measurements between Oct. 1992 and Sep. 1999 (for nearly 2570 days) were used to analyze the distribution of the Antarctic sea ice. We then calculated the surface area of ice coverage using SUTM20 map projection to monitor the periodic variations. Each year, the maximum and minimum coverage of the sea ice were found in late August and February in the study area, respectively. We also studied the sea ice distribution using ERS-1 altimeter data between $45-75^{\circ}W\;and\;55-81.5^{\circ}S$ to compare with the T/P Using the Valid/Invalid flag of the Ocean Product, we analyzed the sea ice distribution between March and August of 1995, which showed very good coherence with the T/P measurements. Our preliminary results showed that the altimeter measurements can be effectively used to monitor the distribution of the sea ice in the polar region. However, the size of radar footprint, typically 2-6km depending on the roughness of the sea surface, may be too big to monitor the sharp boundary between ice and water/land. If more other altimeter mission data with dense coverage such as Geosat GM are analyzed together, this limitation can be significantly improved. If we also combine other microwave remote sensing data such as radiometer, and SSM/I, the result will be significantly enhanced.

Estimation of baro-altimeter errors via model transition technique (모델 전이 기법을 이용한 기압고도계의 오차 추정)

  • 황익호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.32-35
    • /
    • 1996
  • In this paper, it is shown that the dominant errors of baro-altimeters can be characterized by bias and scale factor errors. Also an optimal filter for estimating both bias and scale factor is derived based on the concept of model transition. The optimal filter is, however, not realizable because the model transition hypotheses increase exponentially. Therefore a realizable suboptimal filter using the interacting multiple model(IMM) technique is proposed. Computer simulation results show that the estimation errors of the proposed filter are smaller than those of the conventional least squares algorithm with a forgetting factor when both the bias and the scale factor are varying.

  • PDF

Simulation Study of Altitude and Angle Estimation with an InSAR Altimeter (InSAR 고도계의 높이 및 각도 추정에 대한 모의실험)

  • Paek, Inchan;Lee, Sangil;Chun, Joohwan;Lee, Hyukjung;Jang, Jong Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.838-848
    • /
    • 2014
  • We present a simulation study of an algorithm for the range and angle of arrival(AOA) estimation with an interferometric synthetic aperture radar(InSAR) altimeter using a real digital elevation model(DEM). We also illustrate a step-by-step procedure of generating raw InSAR data, as well as their range and azimuth compressed data, which is to be used for the subsequent altitude and angle estimation. The AOA is estimated using a deterministic maximum likelihood estimator(DMLE) applied to the first arrived point for each pulse in the compressed data obtained with three antennas. The range bin size and the pulse repetition interval(PRI) are much smaller than the cell size of the DEM used in this study. To make the DEM compatible to the radar parameters, we first generate a higher resolution DEM by linearly interpolating the given DEM. After a brief description of the principle of the InSAR altimeter, the algorithms for altitude and angle estimation are presented, and their performance is assessed through simulation.

Improving GPS Vertical Error Using Barometric Altimeter (기압 고도계를 이용한 GPS 수직오차 개선)

  • Kim, La-Woo;Choi, Kwang-Ho;Lim, Joon-Hoo;Yoo, Won-Jae;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Accuracy of GPS (global positioning system) deteriorates dramatically or positioning is impossible in urban area occasionally since high-rise buildings and elevated roads make the reception of navigation signal very difficult so that number of visible satellites decreases. In these cases, vertical error usually becomes much larger than the horizontal error due to the intrinsic geometry of GPS satellites. To obtain more accurate and reliable height information, this paper proposes a hybrid method that combines GPS and a low-cost barometric altimeter. In the proposed method, the sea-level pressure and the sea-surface temperature are applied to the output of the altimeter. Next, the difference between the ellipsoid and the geoid is compensated. Finally, a simple Kalman filter combines the compensated barometric altitude and the GPS height. By static and car experiments, performance of the proposed method is evaluated. By the experiment results, it can be seen that the proposed method improves the altitude accuracy considerably.

A performance analysis of terrain-aided navigation(TAN) algorithms using interferometric radar altimeter (간섭계 레이더 고도계를 활용한 지형참조항법의 성능 분석)

  • Jeong, Seung-Hwan;Yoon, Ju-Hong;Park, Min-Gyu;Kim, Dae-Young;Sung, Chang-Ki;Kim, Hyun-Suk;Kim, Yoon-Hyung;Kwak, Hee-Jun;Sun, Woong;Yoon, Kuk-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.285-291
    • /
    • 2012
  • The paper experimentally verifies the performance of Terrain-Aided Navigation (TAN) using an interferometric radio altimeter, which is recently used due to its accuracy. First, we propose a TAN system that utilizes an interferometric radio altimeter as a measurement system. Second, we implement extended Kalman filter, unscented Kalman filter, and particle filter to evaluate the performance of TAN according to the selection of filters and the difference of environments.

Comparison of Methods for Estimating Extreme Significant Wave Height Using Satellite Altimeter and Ieodo Ocean Research Station Data (인공위성 고도계와 이어도 해양과학기지 관측 자료를 활용한 유의파고 극값 추정 기법 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.524-535
    • /
    • 2021
  • Rapid climate change and oceanic warming have increased the variability of oceanic wave heights over the past several decades. In addition, the extreme wave heights, such as the upper 1% (or 5%) wave heights, have increased more than the heights of the normal waves. This is true for waves both in global oceans as well as in local seas. Satellite altimeters have consistently observed significant wave heights (SWHs) since 1991, and sufficient SWH data have been accumulated to investigate 100-year return period SWH values based on statistical approaches. Satellite altimeter data were used to estimate the extreme SWHs at the Ieodo Ocean Research Station (IORS) for the period from 2005 to 2016. Two representative extreme value analysis (EVA) methods, the Initial Distribution Method (IDM) and Peak over Threshold (PoT) analysis, were applied for SWH measurements from satellite altimeter data and compared with the in situ measurements observed at the IORS. The 100-year return period SWH values estimated by IDM and PoT analysis using IORS measurements were 8.17 and 14.11 m, respectively, and those using satellite altimeter data were 9.21 and 16.49 m, respectively. When compared with the maximum value, the IDM method tended to underestimate the extreme SWH. This result suggests that the extreme SWHs could be reasonably estimated by the PoT method better than by the IDM method. The superiority of the PoT method was supported by the results of the in situ measurements at the IORS, which is affected by typhoons with extreme SWH events. It was also confirmed that the stability of the extreme SWH estimated using the PoT method may decline with a decrease in the quantity of the altimeter data used. Furthermore, this study discusses potential limitations in estimating extreme SWHs using satellite altimeter data, and emphasizes the importance of SWH measurements from the IORS as reference data in the East China Sea to verify satellite altimeter data.