Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.633-633
/
2002
We investigated the distributions of sea ice using various microwave remote sensing techniques in the part of Drake passage, Antarctica, between the area 45-75$^{\circ}$W and 55-66$^{\circ}$S. We used Topex/Poseidon(T/P) radar altimeter, ERS-1 altimeter, ERS-2 scatterometer, Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), and DMSP Special Sensor Microwave/Imager(SSM/I) data. The sea ice distributions were estimated between May and Jun., 1995 and Oct. and Nov., 1998. The two altimeter measurements (T/P and ERS-1) showed good coherence with the results from the radiometer data in the given period when the ice concentration of 20% and greater was selected. The scatterometer data also showed good correlation with altimetry-implied sea ice surface. The maximum and minimum values of sea ice distribution were appeared in Aug. and Feb., respectively. In general, the sea ice distributions estimated from radar altimeter, radioneter, and scatterometer are well correlated.
Recently, ESA (European Space Agency) has launched CryoSAT-2 for polar ice observations. CryoSAT-2 is equipped with a SIRAL (SAR/interferometric radar altimeter), which is a high spatial resolution radar altimeter. Conventional altimeters cannot measure a precise three-dimensional ground position because of the large footprint diameter, while SIRAL altimeter system accomplishes a precise three-dimensional ground positioning by means of interferometric synthetic aperture radar technique. In this study, we developed an efficient SIRAL SARIn mode processing technique to measure a precise three-dimensional ground position. We first simulated SIRAL SARIn RAW data for the ideal target by assuming the flat Earth and linear flight track, and second accessed the precision of three-dimensional geopositioning achieved by the proposed algorithm. The proposed algorithm consists of 1) azimuth processing that determines the squint angle from Doppler centroid, and 2) range processing that estimates the look angle from interferometric phase. In the ideal case, the precisions of look and squint angles achieved by the proposed algorithm were about -2.0 ${\mu}deg$ and 98.0 ${\mu}deg$, respectively, and the three-dimensional geopositioning accuracy was about 1.23 m, -0.02 m, and -0.30 m in X, Y and Z directions, respectively. This means that the SIRAL SARIn mode processing technique enables to measure the three-dimensional ground position with the precision of several meters.
본 논문에서는 무인기 자동이착륙을 위해 DGPS와 레이저 고도계를 이용한 고도계산 알고리듬을 제시하였다. 지상시험을 통해 레이저 고도계의 특성을 분석하고 신호의 난반사를 제거하기 위해 저역통과 필터를 설계했으나, 시뮬레이션 결과 단일 센서를 사용해서 지면고도를 정확하고 안정적으로 측정할 수 없음을 확인하였다. 레이저 고도계의 단점을 보완하기 위해 DGPS에서 출력되는 수직방향 속도를 사용하여 선형 칼만필터를 설계하였다. 설계한 필터는 시뮬레이션, 지상시험 그리고 비행시험의 검증단계를 거쳐 자동이착륙에 필요한 정확도를 만족함을 확인하였다.
Kim, Jeong-Woo;Hong, Sung-Min;Hwang, Jong-Sun;Yoon, Ho-Il;Lee, Bang-Yong;Kim, Yea-Dong
Ocean and Polar Research
/
제24권3호
/
pp.255-261
/
2002
We investigated the distribution of sea ice using Topex/Poseidon (T/P) and ERS-1 .ada. altimeter data in the northwest Weddell Sea, Antarctica, between the area $45-75^{\circ}W\;and\;55-66^{\circ}S$. Using the Geo_Bad_1 flag of the Merged GDR of the T/P, we classified the surface into ocean, land, and sea. Total 257 cycles of altimeter measurements between Oct. 1992 and Sep. 1999 (for nearly 2570 days) were used to analyze the distribution of the Antarctic sea ice. We then calculated the surface area of ice coverage using SUTM20 map projection to monitor the periodic variations. Each year, the maximum and minimum coverage of the sea ice were found in late August and February in the study area, respectively. We also studied the sea ice distribution using ERS-1 altimeter data between $45-75^{\circ}W\;and\;55-81.5^{\circ}S$ to compare with the T/P Using the Valid/Invalid flag of the Ocean Product, we analyzed the sea ice distribution between March and August of 1995, which showed very good coherence with the T/P measurements. Our preliminary results showed that the altimeter measurements can be effectively used to monitor the distribution of the sea ice in the polar region. However, the size of radar footprint, typically 2-6km depending on the roughness of the sea surface, may be too big to monitor the sharp boundary between ice and water/land. If more other altimeter mission data with dense coverage such as Geosat GM are analyzed together, this limitation can be significantly improved. If we also combine other microwave remote sensing data such as radiometer, and SSM/I, the result will be significantly enhanced.
In this paper, it is shown that the dominant errors of baro-altimeters can be characterized by bias and scale factor errors. Also an optimal filter for estimating both bias and scale factor is derived based on the concept of model transition. The optimal filter is, however, not realizable because the model transition hypotheses increase exponentially. Therefore a realizable suboptimal filter using the interacting multiple model(IMM) technique is proposed. Computer simulation results show that the estimation errors of the proposed filter are smaller than those of the conventional least squares algorithm with a forgetting factor when both the bias and the scale factor are varying.
본 논문에선 Interferometric Synthetic Aperture Radar(InSAR) 고도계의 측정값인 거리와 도래각(Angle of Arrival: AOA)을 실제 수치 표고 자료(Degital Elevation Model: DEM)상에서 모의실험하여 얻었다. 이 때 거리 측정값을 얻기 위해서 필요한 원시 데이터 및 압축 데이터의 결과도 나타냈다. 도래각은 안테나 간의 위상 차이로부터 Deterministic Maximum Likelihood Estimator(DMLE)를 사용하여 구했다. 거리 빈(range bin)의 크기와 펄스 반복 주기(PRI: Pulse Repetition Interval)가 실제 수치 표고 자료의 셀 크기에 비해 작기 때문에 모의실험에 적합하지 않다. 따라서 본 논문에서는 선형 보간법을 이용하여 해상도가 높은 수치 표고 자료를 생성하여 모의실험하였다. 서론 부분에서 InSAR 고도계를 소개하였고, 고도와 각도를 구하는 방법에 대해서 설명하였으며, 모의실험 부분에서 위에 소개된 방법의 성능을 보였다.
위성항법시스템 (GPS; global positioning system)은 도심지의 빌딩이나 터널, 고가도로와 같은 지형적 환경에 의해 전파 수신이 어려워지면 가시 위성의 개수가 급격히 줄어들어 위치오차가 매우 커지거나 측위가 불가능하게 된다. 특히 수직 위치오차는 GPS의 기하학적 배치에 의한 한계로 인하여 수평오차보다 약 1.5 배 이상 크며 혹독한 신호 환경에서는 수평오차보다 더욱 크게 증가하게 된다. 본 논문에서는 GPS의 수직오차 개선을 위해 GPS와 저가형 기압 고도계의 결합 방법을 제안하였다. 제안된 방법은 기압 고도계에 의하여 제공된 기압 고도 측정치에 해면기압과 해면온도에 의한 보상치와 지오이드고를 적용시킨 후 칼만필터에 의하여 GPS 고도와 기압 고도를 융합하는 특징을 가진다. 정적 실험과 차량 실험을 통하여 제안된 기압 고도계와 GPS의 융합 방식의 정확도를 평가하였다. 그 결과 제안된 방법이 고도 정보의 정확도를 크게 향상시킬 수 있음을 확인하였다.
본 논문에서는 간섭계 레이더 고도계를 활용한 지형참조항법의 성능을 분석하고자 한다. 간섭계 레이더 고도계는 항체의 주변 지형의 고도 중 가장 높은 값을 측정값으로 취함으로써 항법의 정확성을 향상시키고 있다. 이에 본 연구에서는 간섭계 레이더 고도계의 적용에 따른 새로운 측정 모델을 제시하고 이에 따른 지형참조항법 시스템을 구축하려 한다. 또한 필터에 따른 지형참조항법의 성능 분석을 위하여 확장형 칼만 필터, 무향 칼만 필터, 파티클 필터를 적용하며 여러 환경의 변화에 따른 지형참조항법의 성능을 도출고자 한다.
급격한 기후 변화와 해양 온난화에 의해 지난 수십 년 동안 파고의 변동성이 증가하였다. 상위 1% (또는 5%) 파고와 같은 극한 파고는 국지적인 해역 뿐만 아니라 전 지구 대양에서도 평균 파고에 비해 현저하게 증가하였다. 1991년부터 인공위성 고도계를 활용하여 유의파고를 지속적으로 관측하고 있으며 통계적 기법을 기반으로 100년 빈도 유의파고를 추정하기에 비교적 충분한 자료가 축적되었다. 이어도 해양과학기지에서 유의파고 극값을 추정하기 위하여 2005년부터 2016년까지 위성 고도계 자료를 활용하였다. 대표적인 극값 분석 방법인 Initial distribution Method (IDM)와 Peak over Threshold (PoT)를 위성 도고계 유의파고 관측 자료에 적용하고 이어도 해양과학기지에서 관측된 실측자료와 비교하였다. 이어도 해양과학기 관측 자료에 IDM과 PoT 기법을 적용하여 추정된 100년 빈도 유의파고는 각각 8.17 m와 14.11 m이며, 인공위성 고도계 관측 자료를 활용하였을 때는 각각 9.21 m와 16.49 m이었다. 관측 최대값과의 비교 분석에서 IDM을 활용한 분석은 유의파고 극값을 과소추정 하는 경향을 보였다. 이는 IDM 보다 PoT 기법이 유의파고의 극값을 적절하게 추정하고 있음을 의미한다. PoT 기법의 우수성은 높은 유의파고가 발생하는 태풍의 영향을 받는 이어도 해양과학기지 실측 자료를 활용한 결과에서도 증명되었다. 또한 PoT 기법으로 추정된 유의파고 극값의 안정성은 고도계 자료의 감소에 따라 저하될 수 있음을 확인하였다. 인공위성 고도계 자료를 활용하여 유의파고 극값 추정시 발생할 수 있는 한계점과 인공위성 자료를 검증할 수 있는 자료로써 이어도 해양과학기지 관측 자료의 중요성에 대하여 논의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.