• Title/Summary/Keyword: Altimeter

Search Result 154, Processing Time 0.022 seconds

Performance Improvement of TRN Batch Processing Using the Slope Profile (기울기 프로파일을 이용한 일괄처리 방식 지형참조항법의 성능 개선)

  • Lee, Sun-Min;Yoo, Young-Min;Lee, Won-Hee;Lee, Dal-Ho;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.384-390
    • /
    • 2012
  • In this paper, we analyzed the navigation error of TERCOM (TErrain COntour Matching), which is TRN (Terrain Referenced Navigation) batch processing, caused by scale factor error of radar altimeter and proved the possibility of false position fix when we use the TERCOM's feature matching algorithm. Based on these, we proposed the new TRN batch processing algorithm using the slope measurements of terrain. The proposed technique measures on periodic changes in the slope of the terrain elevation profile, and these measurements are used in the feature matching algorithm. By using the slope of terrain data, the impact of scale factor errors can be compensated. By simulation, we verified improved outcome using this approach compared to the result using the conventional method.

Sea surface circulation and ie variability in the North East Asian Seas by remote sensing (Topex/Poseidon)

  • Yoon, Hong-Joo;Yoon, Yong-Hoon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.108-111
    • /
    • 2003
  • Altimeter data from the Topex/Poseidon (T/P) were analyzed to study the sea surface circulation and its variability in the North East Asian Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. Tf data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and S2. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific (NP) was higher than Yellow Sea (YS) and East Sea (ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

Test and Evaluation of Onboard Equipments for Guided Missile via Captive Flight Test (탑재비행시험을 이용한 유도무기 탑재장비의 시험평가)

  • Lee, Sung-Mhan;Oh, Hyun-Shik;Sung, Duck-Yong;Lee, Su-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.73-78
    • /
    • 2007
  • The process and results of Captive Flight Test(CFT), conducted by Agency for Defense Development(ADD) using the Korean KTX-1 trainer and external fuel tank, are presented. Through over 150 sorties of CFT, the guided weapon system's critical subsystems like Seeker, Navigation Device and Technology, Inertial Sensor, and Radio Altimeter are tested and evaluated. Using the CFT, time and cost are saved in weapon system research and development procedure.

Shallow Water Tides in the Seas around Korea

  • Kantha, Lakshmi H.;Bang, In-Kweon;Choi, Jei-Kook;Suk, Moon-Sik
    • Journal of the korean society of oceanography
    • /
    • v.31 no.3
    • /
    • pp.123-133
    • /
    • 1996
  • We describe here the shallow water tides in the seas around Korea, obtained from a nonlinear barotropic model of tides in a domain encompassing the Yellow Sea, the East China Sea and the East Sea (Sea of Japan). As expected, the shallow water tides are large in the shallow marginal areas around the Yellow Sea, with the M4 tide reaching amplitudes as high as 10 cm near the Korean coast, and quite small in the East Sea. However, we also find that the regions east of the Yangtze River ($126^{\circ}E,$ $30^{\circ}N$) in the East China Sea also sustain large shallow water tides, with $M_{4}$, amplitudes reaching 5 cm. Such large shallow water tides are an important component of altimeter-measured sea levels and should not be ignored in any altimetric analyses of the Yellow Sea and the East China Sea. This study also highlights the desirability of very high resolution models to derive accurate shallow water tides in coastal regions.

  • PDF

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

Multiple Sensor Fusion Algorithm for the Altitude Estimation of Deep-Sea UUV, HEMIRE (심해무인잠수정 해미래의 고도정보 추정을 위한 다중센서융합 알고리즘)

  • Kim, Dug-Jin;Kim, Ki-Hun;Lee, Pan-Mook;Cho, Sung-Kwon;Park, Yeoun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1202-1208
    • /
    • 2008
  • This paper represents the multiple sensor fusion algorithm for the deep-sea unmanned underwater vehicles (UUV), composed of a remotely operated vehicle (ROV) 'Hemire' and a depressor 'Henuvy'. The performance of underwater positioning system usually highly depend on that of acoustic sensors such as ultra short base line(USBL), long base line(LBL) and altimeter. A practical sensor fusion algorithm is proposed in the sense of a moving window concept. The performance of the proposed algorithm can be observed by applying the algorithm to the Hemire sea trial data which was measured at the East Sea.

Apophis Rendezvous Mission: II. Payloads and Operation Scenario

  • Jeong, Minsup;Choi, Young-Jun;Moon, Hong-Kyu;Kim, Myung-Jin;Choi, Jin;Moon, Bongkon;JeongAhn, Youngmin;Lee, Hee-Jae;Baek, Seul-Min;Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2021
  • We plan to visit the Apophis, a Potentially Hazardous Asteroid (PHA). Apophis will have an extremely close encounter with the Earth on April, 2029. At the closest position, Apophis approaches 0.1 lunar distances from the Earth. The science goals are 1) mapping the surface of the asteroid before and after the encounter, 2) measuring surface roughness before and after the encounter, and 3) measuring interplanetary space environments such as magnetic field and dust particles. For the science goal, we are planning to employ five instruments for this mission, which are Polarimetric Asteroid Camera (PolACam), Asteroid Terrain Mapping Camera (MapCam), Laser Altimeter, Dust Particle Detector (DPDetector), Magnetometer (Mag). In this presentation, we plan to give a talk on the instruments.

  • PDF

Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017 (인공위성 고도계 자료(1993-2017년)를 이용하여 탐지‧추적‧분류한 동해 중규모 소용돌이의 통계적 특성)

  • LEE, KYUNGJAE;NAM, SUNGHYUN;KIM, YOUNG-GYU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.267-281
    • /
    • 2019
  • Energetic mesoscale eddies in the East Sea (ES) associated with strong mesoscale variability impacting circulation and environments were statistically characterized by analyzing satellite altimeter data collected during 1993-2017 and in-situ data obtained from four cruises conducted between 2015 and 2017. A total of 1,008 mesoscale eddies were detected, tracked, and identified and then classified into 27 groups characterized by mean lifetime (L, day), amplitude (H, m), radius (R, km), intensity per unit area (EI, $cm^2/s^2/km^2$), ellipticity (e), eddy kinetic energy (EKE, TJ), available potential energy (APE, TJ), and direction of movement. The center, boundary, and amplitude of mesoscale eddies identified from satellite altimeter data were compared to those from the in-situ observational data for the four cases, yielding uncertainties in the center position of 2-10 km, boundary position of 10-20 km, and amplitude of 0.6-5.9 cm. The mean L, H, R, EI, e, EKE, and APE of the ES mesoscale eddies during the total period are $95{\pm}104$ days, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, and $588{\pm}250TJ$, respectively. The ES mesoscale eddies tend to move following the mean surface current rather than propagating westward. The southern groups (south of the subpolar front) have a longer L, larger H, R, and higher EKE, APE; and stronger EI than those of the northern groups and tend to move a longer distance following surface currents. There are exceptions to the average characteristics, such as the quasi-stationary groups (the Wonsan Warm, Wonsan Cold, Western Japan Basin Warm, and Northern Subpolar Frontal Cold Eddy groups) and short-lived groups with a relatively larger H, higher EKE, and APE and stronger EI (the Yamato Coastal Warm, Central Yamato Warm, and Eastern Japan Basin Coastal Warm eddy groups). Small eddies in the northern ES hardly resolved using the satellite altimetry data only, were not identified here and discussed with potential over-estimations of the mean L, H, R, EI, EKE, and APE. This study suggests that the ES mesoscale eddies 1) include newly identified groups such as the Hokkaido and the Yamato Rise Warm Eddies in addition to relatively well-known groups (e.g., the Ulleung Warm and the Dok Cold Eddies); 2) have a shorter L; smaller H, R, and lower EKE; and stronger EI and higher APE than those of the global ocean, and move following surface currents rather than propagating westward; and 3) show large spatial inhomogeneity among groups.

Development of Integrated Navigation Computer for On/Off Line Processing (실시간/후처리 기법을 고려한 복합 항법 컴퓨터 개발)

  • Jin, Yong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.133-140
    • /
    • 2002
  • In this paper, the structure of integrated navigation computer for experiment is proposed. It is designed for considering the real time processing and data storage capacity. It will be used in missile, aircraft, submarine system and experimental vehicle. The I/O device supports IMU, GPS, odometer, altimeter, depth sensor, inclinometer etc. And the main storage device uses the tape device. That can improve the system stability. Therefore it can be used in a high dynamic or shock environment. The embedded linux is used as an Operating System. For the real time capability, sensor data processing and algorithm processing units are seperated. The time synchronization is referenced by IMU data.

Real-time Calculation of Geoid Applicable to Embedded Systems (내장형 시스템에 적용 가능한 지오이드의 실시간 결정)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.374-381
    • /
    • 2020
  • In order to improve the vertical position accuracy, the advantages of GPS and barometric altimeter are combined and used, but in order to fuse the two sensors, the geoid altitude must be compensated. In this paper, we proposed a technique that can calculate geoid altitude in real time even in low-cost embedded systems applied to drones or autonomous vehicles. Since the reference EGM08 is determined by a polynomial of the 2160th order, real-time calculation is impossible in the embedded system. Therefore, by introducing a linear interpolation technique, the amount of calculation was increased, and the storage space was saved by 75% by using the integer geoid height as a grid point. The accuracy of the proposed technique was evaluated through simulation, and it was confirmed that the accuracy of the maximum error is -1.215 m even in the region where the geoid change is rapid.