• Title/Summary/Keyword: Alternative-fuel vehicle

Search Result 109, Processing Time 0.068 seconds

A Study on Compatibility of Vehicle Using Alternative Fuels (자동차 대체연료의 상호호환성 연구)

  • Lee, Taek-Hee;Kang, Seung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.74-81
    • /
    • 2012
  • The purpose of this study provides the theoretical model for protecting the economic and social loss from the current alternative fuel vehicle which is developed without compatibility and senseless one's own through verifying the statistical significant by method of measuring analysis. The market scale of alternative fuel vehicle depends on customer's and station's expectation about the number of potential vehicle users. It is very difficult for vehicle manufacturer to make a decision on the standard alternative fuel vehicle as it might reduce profit and market share. Accordingly, the development of alternative fuel vehicle should have manufacturer confident on the potential profit in the future. Moreover, if we decide to use the non-standard fuel after we started to use the standard fuel, it would take a huge cost comparing with starting to use the standard fuel only. As a result, once one of companies starts to provide the non-standard fuel service, it is getting more difficult to use the standard fuel going forward. Consequently, we may review the possibility of choice on the standard fuel before the vehicle manufacturer starts service with non-standard fuel.

Analysis on the business strategy and policy for the alternative fuel vehicle : Using stated preference data (대체연료 자동차에 대한 소비자 선호 분석을 통한 산업전략과 기술정책에 관한 연구)

  • 김연배;정기철;안지운;이정동
    • Proceedings of the Technology Innovation Conference
    • /
    • 2006.02a
    • /
    • pp.264-297
    • /
    • 2006
  • In this paper, we attempt to analyze consumer preference for the alternative-fuel vehicles based on data from a stated preference using the conjoint analysis. Five possible fuel types (gasoline, diesel, CNG, LPG, Hybrid (electricity+gasoline)) are covered in conjoint cards. To estimate and analyze consumer preference, discrete choice model is used. Specifically, Bayesian mixed logit model is used. Based on estimating results, we discuss the business strategy and policy for the alternative fuel vehicle.

  • PDF

A Study of the Fuel Economy Improvement of a Heavy Duty in Commercial Vehicle(I) (상용차 탑재 대형엔진의 차량연비 개선 연구(I))

  • Lyu, Myung-Seok;Doo, Byung-Mann;Ku, Young-Gon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.44-48
    • /
    • 2008
  • This paper describes on studies of the heavy duty engine calibration for better fuel economy based on real driving conditions. Using testbed validated software simulation of the engine and turbocharger system, an alternative turbocharger specification, with potential to improve fuel economy was identified. Secondly, the engine calibration was modified to optimize vehicle fuel economy over a typical customer drive cycle whilst still meeting the steady-state (testbed) emissions legislation. These results were confirmed by field testing of a vehicle equipped with the updated specifications. This study found good agreements between the prediction and the field test on the vehicle fuel economy improvements of the express bus with updated calibration and turbocharger.

Experimental study on the improvement of cold startability of methanol (M85) fueled engine (메탄올(M85) 엔진의 냉시동성 개선을 위한 실험적 연구)

  • 이시훈;신영기;황상순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.71-79
    • /
    • 1992
  • Recently, air pollution and energy security problems have necessitated the development of alternative fuel vehicles. As an alternative fuel vehicle FFV(Flexible Fuel Vehicle) which can be operated by and mixture between gasoline and M85(methanol 85% and gasoline 15% by vol. percent) has been drawing great attention. But poor cold startability of high methanol- content fuel which is characteristic of lower fuel volatility and higher latent heat of vaporization than gasoline is one of the major problems to be solved for the development of FFV. In this paper, important factors influencing cold startability of general S.I. engines are described. And, so-me cost-effective and practical methods were investigated in view of the optimization of fuel-ing parameters and ignition system for M85 fuel. The test results showed good startability up to (-22)-(-23).deg.C.

  • PDF

Experimental Study of Emission Characteristics for CNG Passenger Car (CNG 승용 자동차의 배출가스 특성에 관한 실험적 연구)

  • Kim, Hyun-jun;Lee, Ho-kil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, most of the energy consumed in vehicle is derived from fossil fuels. For this reason, the demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Natural gas represents today a promising alternative to conventional fuels for vehicles propulsion, because it is characterized by a relatively low cost, better geopolitical distribution than oil, lower environmental impact, higher octane number and a higher self ignition temperature. Above all, CNG is an environmentally clean alternative to the existing spark ignition engines with the advantages of minimum change. In this study was installed bi-fuel system that a conventional 2 liters gasoline engine was modified to run on natural gas by a gas injection system. Experiments were mainly carried on the optimization of an ECU control strategy affecting the emission characteristics of CNG/Gasoline bi-fule vehicle. The test results shown that CO2 emission in bi-fuel mode was reduced 16% compared to gasoline fuel in the NEDC mode. Also the amount of CO and HC emissions in bi-fuel and gasoline modes were found to equality. But Compared to gasoline, the bi-fuel mode resulted in higher NOx emissions.

An Experimental Study on Spray Characteristics of Bio-diesel fuel in Three Injectors with Different Operating Mechanism for Common-rail System (커먼레일 시스템용 구동방식에 따른 인젝터별 바이오디젤 분무 특성 연구)

  • Sung, Gisu;Kim, Jinsu;Jeong, Seokchul;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2015
  • Recently, exhaust gas regulation has been gradually strengthened due to depletion of fossil fuels and environmental problem like a global warming. Due to this global problem, the demand for eco-friendly vehicle development is rapidly increasing. A clean diesel vehicle is considered as a realistic alternative. The common-rail fuel injection system, which is the key technology of the clean diesel vehicle, has adopted injection strategies such as high pressure injection, multiple injection for better atomization of the fuel. In addition, the emission regulations in the future is expected to be more stringent, which a conventional engine is difficult to deal with. One of the way for actively proceeding is the study of alternative fuels. Among them, the bio-diesel has been attracted as an alternative of diesel. So, in this study, spray characteristics of bio-diesel was analyzed in the common-rail fuel injection system with three injectors driven by different operating mechanism.

A Study on the Fuel Injection System Simulating a Vehicle Driven with FTP-75 Mode for Cold Transition Period (FTP-75 냉간 주행 모드로 운전하는 차량의 연료분사 모사시스템에 관한 연구)

  • Oh, Dae-San;Lee, Choong-Hoon
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.76-81
    • /
    • 2011
  • A fuel injection system which is operated with a real vehicle driving simulation was developed as an alternative to a vehicle test for the fuel injectors. The sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in FTP-75 mode in a chassis dynamometer. The imperative sensor signals of the throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and cooling water and intake air temperature were reconstructed using FPGA DAQ boards and a PXI computer. The scanning results showed good agreement with the input signals that were reconstructed. The ECU HILS system operated successfully to drive six fuel injectors, which injected fuel in the same pattern as if they were mounted in the vehicle driven in FTP-75 mode. Also, the fuel injection system developed in this research shows the possibility of application in evaluating the characteristics of fuel injection rate for injectors according to properties of injected fuel with the real driving mode of vehicles.

Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars (CNG/LPG Bi-fuel 승용차의 배출가스 특성)

  • Cho, Chong-Pyo;Lee, Young-Jae;Kim, Gang-Chul;Kwon, Oh-Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

Development of high-pressure Type 3 composite cylinder for compressed hydrogen storage of fuel cell vehicle (차량용 200bar 급 Type 3 복합재 압력용기의 개발 및 설계인증시험)

  • Chung, Sang-Su;Park, Ji-Sang;Kim, Tae-Wook;Chung, Jae-Han
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.203-206
    • /
    • 2005
  • The objective of study on composite cylinder for alternative fuel vehicle is to develop safe, efficient, and commercially viable, on-board fuel storage system for the fuel cell vehicle or natural gas vehicle that use highly compressed gaseous fuel such as hydrogen or natural gas. This study presents the whole procedure of development and certification of a type 3 composite cylinder of 207bar service pressure and 70 liter water capacity, which includes design/analysis, processing of filament winding, and validation through various testing and evaluation. Design methods of liner configuration and winding patterns are presented. Three dimensional, nonlinear finite element analysis techniques are used to predict burst pressure and failure mode. Design and analysis techniques are verified through burst and cycling tests. The full qualification test methods and results for validation and certification are presented.

  • PDF

Study on Potential Feasibility of Biomethane as a Transport Fuel in Korea (수송용 대체연료로서 바이오메탄의 잠재적 타당성 연구)

  • Kim, Jae-Kon;Lee, Don-Min;Park, Chun-Kyu;Yim, Eui-Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Young-Sam
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.17-28
    • /
    • 2011
  • Biogas production and utilization are an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy sectors such as space heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded that is mainly the removal of carbon dioxide to increase the methane content up to more than 95 ~ 97 vol% in some cases, similar to the composition of fossil-based natural gas. Usage of Biogas as a fuel of vehicles have an effect of reducing $CO_2$ emission compared to fossil fuels. Biomethane which is produced by upgrading of biogas is regarded as a good alternative energy and usage of clean energy is encouraged to deal with air pollution and waste management as well as production of clean energy. Recently, biogas projects for vehicle fuel are newly being launched and Korea government have also announced a plan for investment to develop biogas as a transport fuel. In this study, it is aimed to examine the potential feasibility of biomethane as a transport fuel. As a results, the status of biomethane, quality standard, quality characteristics, and upgrading technology of biogas were investigated to evaluate of biogas as a vehicle fuel of transportation.