• 제목/요약/키워드: Alternative temperature conditions

검색결과 282건 처리시간 0.034초

Optimization and characterization of biodiesel produced from vegetable oil

  • Mustapha, Amina T.;Abdulkareem, Saka A.;Jimoh, Abdulfatai;Agbajelola, David O.;Okafor, Joseph O.
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.147-163
    • /
    • 2013
  • The world faces several issues of energy crisis and environmental deterioration due to over-dependence on single source of which is fossil fuel. Though, fuel is needed as ingredients for industrial development and growth of any country, however the fossil fuel which is a major source of energy for this purpose has always been terrifying thus the need for alternative and renewable energy sources. The search for alternative energy sources resulted into the acceptance of a biofuel as a reliable alternative energy source. This work presents the study of optimization of process of transesterification of vegetable oil to biodiesel using NaOH as catalyst. A $2^4$ factorial design method was employed to investigate the influence of ratio of oil to methanol, temperature, NaOH concentration, and transesterification time on the yield of biodiesel from vegetable oil. Low and high levels of the key factors considered were 4:1 and 6:1 mole ratio, 30 and $60^{\circ}C$ temperatures, 0.5 and 1.0 wt% catalyst concentration, and 30 and 60 min reaction time. Results obtained revealed that oil to methanol molar ratio of 6:1, tranesetrification temperature of $60^{\circ}C$, catalyst concentration of 1.0wt % and reaction time of 30 min are the best operating conditions for the optimum yield of biofuel from vegetable oil, with optimum yield of 95.8%. Results obtained on the characterizzation of the produced biodiesel indicate that the specific gravity, cloud point, flash point, sulphur content, viscosity, diesel index, centane number, acid value, free glycerine, total glycerine and total recovery are 0.8899, 4, 13, 0.0087%, 4.83, 25, 54.6. 0.228mgKOH/g, 0.018, 0.23% and 96% respectively. Results also indicate that the qualities of the biodiesel tested for are in conformity with the set standard. A model equation was developed based on the results obtained using a statistical tool. Analysis of variance (ANOVA) of data shows that mole ratio of ground nut oil to methanol and transesterification time have the most pronounced effect on the biodiesel yield with contributions of 55.06% and 9.22% respectively. It can be inferred from the results various conducted that vegetable oil locally produced from groundnut oil can be utilized as a feedstock for biodiesel production.

코킹 공정(工程)을 이용한 오일샌드 역청(瀝靑)의 열화학(熱化學)적 전환(轉換) (Thermochemical Conversion of Oil sand Bitumen in Delayed Coking Reactor)

  • 이시훈;윤상준;이재구;김재호
    • 자원리싸이클링
    • /
    • 제17권3호
    • /
    • pp.35-41
    • /
    • 2008
  • 석유를 대체할 수 있는 자원 중의 하나인 오일샌드 역청의 열화학적 전환을 통해 생산된 연료유 특성을 열천칭 분석기와 중질유들의 전환 공정에 사용되는 딜레이드 코킹 반응기(600ml)를 이용하여 분석하였다. 동일한 $50^{\circ}C/min$의 승온 속도로 최종 코킹 온도를 $400{\sim}550^{\circ}C$까지 변화시킨 결과, 최종 코킹 온도가 증가할수록 코킹이 완료되는 시간과 전환률이 증가하였다. 그러나 $450^{\circ}C$이상의 온도에서는 미비하게 증가하여 코킹 운전이 적어도 $450^{\circ}C$ 이상이 되어야 함을 알 수 있었다. 딜레이드 코킹 반응기의 최대 액체 수율은 $475^{\circ}C$의 조건으로 나타났으며 코킹에 의해 생성되는 오일의 API, SIMDAS분석을 통해 경질화가 진행되어 일반적인 디젤과 비슷한 연료 특성을 가짐을 확인하였다.

고압반응 하에서 요소와 메탄올을 사용한 메틸카바메이트와 디메틸카보네이트 제조에 관한 금속산화물 촉매 및 이온성액체의 영향 (Effect of Metal Oxide Catalysts and Ionic Liquids on the Synthesis of Methyl Carbamate and Dimethyl Carbonate from Urea and Methanol under High Pressure Reaction System)

  • 김윤민;김철웅;고재천;박대원;구기갑
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.732-738
    • /
    • 2011
  • 고압 반응시스템에서 요소와 메탄올로부터 메틸카바메이트(MC) 및 디메틸카보네이트(DMC)의 제조에 관한 금속산화물촉매와 이온성액체의 영향을 고찰하였다. 고립계에서 요소와 메탄올로부터 MC 수율은 촉매를 사용하지 않고도 $150^{\circ}C$ 이상의 반응온도에서 거의 100%를 나타내었으나, DMC 수율은 반응온도와 무관하게 1.5% 이하로 매우 낮은값을 나타내었다. 또한 MC와 메탄올로부터 DMC 수율은 $ZnCl_{2}$ 촉매를 사용한 경우에 가장 우수하였으며, 최적조건에서 16.3% 정도를 나타내었다. DMC 수율은 반연속식 실험에서 나노 크기의 촉매와 이온성액체를 함께 적용한 경우에 좀 더 향상되었다.

Utilization of carrageenan as an alternative eco-biopolymer for improving the strength of liquefiable soil

  • Regina A. Zulfikar;Hideaki Yasuhara;Naoki Kinoshita;Heriansyah Putra
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.221-230
    • /
    • 2023
  • The liquefaction of soil occurs when a soil loses strength and stiffness because of applied stress, such as an earthquake or other changes in stress conditions that result in a loss of cohesion. Hence, a method for improving the strength of liquefiable soil needs to be developed. Many techniques have been presented for their possible applications to mitigate liquefiable soil. Recently, alternative methods using biopolymers (such as xanthan gum, guar gum, and gellan gum), nontraditional additives, have been introduced to stabilize fine-grained soils. However, no studies have been done on the use of carrageenan as a biopolymer for soil improvement. Due to of its rheological and chemical structure, carrageenan may have the potential for use as a biopolymer for soil improvement. This research aims to investigate the effect of adding carrageenan on the soil strength of treated liquefiable soil. The biopolymers used for comparison are carrageenan (as a novel biopolymer), xanthan gum, and guar gum. Then, sand samples were made in cylindrical molds (5 cm × 10 cm) by the dry mixing method. The amount of each biopolymer was 1%, 3%, and 5% of the total sample volume with a moisture content of 20%, and the samples were cured for seven days. In terms of observing the effect of temperature on the carrageenan-treated soil, several samples were prepared with dry sand that was heated in an oven at various temperatures (i.e., 20℃ to 75℃) before mixing. The samples were tested with the direct shear test, UCS test, and SEM test. It can increase the cohesion value of liquefiable soil by 22% to 60% compared to untreated soil. It also made the characteristics of the liquefiable increase by 60% to 92% from very loose sandy soil (i.e., ϕ=29°) to very dense sandy soil. Carrageenan was also shown to have a significant effect on the compressive strength and to exceed the liquefaction limit. Based on the results, carrageenan was found to have the potential for use as an alternative biopolymer.

Precipitation Stripping법에 의한 고순도 Oxalate 분말의 제조 (Preparation of High-purity Zinc Oxalate Powder by the Precipitation Stripping Method)

  • 이재천;이강인;유효신
    • 한국세라믹학회지
    • /
    • 제29권12호
    • /
    • pp.963-969
    • /
    • 1992
  • This paper describes the feasibility for a direct production of zinc oxalate powders from zinc-loaded D2EHPA solutions combining the purification and the precipitation in one operation unit. This process has the potential as an alternative to conventional method for the synthesis of zinc oxide precursor particles from the hydrometal-lurgical processes. Zinc was extracted into D2EHPA in kerosene and then zinc-loaded D2EHPA solution was emulsified with oxalic acid-HCl solution to precipitate zinc oxalate powder, which was readily calcined to zinc oxide. The precipitation kinetics and yield were sensitive to experimental conditions. The morphology, size and size distribution of the zinc oxalate powders varied with zinc/oxalate ion riatio, temperature, and the presence of SPAN 60, which affected nucleation, growth, and the emulsion characteristics.

  • PDF

EMTDC Modeling Method of Resistive type Superconducting Fault Current Limiter

  • Taejeon Huh;Lee, Jaedeuk;Park, Minwon;Yu, In-Keun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.60-65
    • /
    • 2003
  • An effective modeling and simulation scheme of a resistive type Superconducting fault Current Limiter (SFCL) using PSCAD/EMTDC is proposed in this paper. In case of High Temperature Superconducting (HTS) resistive type fault current limiter current limiting is implemented by the ultra-fast transition characteristics from the superconducting (non-resistive) state to the normal (resistive) state by overstepping the critical current density. The states can generally be divided into three sub-states: the superconducting state the quench state and the recovery state respectively. In order to provide alternative application schemes of a resistive type SFCL, an effective modeling and simulation method of the SFCL is necessary. For that purpose, in this study, an actual experiment based component model is developed and applied for the simulation of the real resistive type SFCL using PSCAD/EMTDC. The proposed simulation scheme can be implemented to the grid system readily under various system conditions including sort of faults and the system capacity as well. The simulation results demonstrate the effectiveness of the proposed model and simulation scheme.

FEM을 이용한 GMA 용접공정의 비드형상 모델링 (Modelling of Bead Geometry for GMA Welding Process Using FEM)

  • 정영재
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.298-303
    • /
    • 1997
  • Over the last few year, there has been a growing interest in quantitative representation of heat transfer phenomena in weld pools in order to relate the processing conditions to the quality of the weldment produced and to use this information for the optimisation and robotization of the welding process. Normally, a theoretical model offers a powerful alternative to check out the physical concepts of the welding process and to calculate the effects of varying any of parameters. To solve this problem, a transient 2D(two-dimensional) heat conduction were developed for determining bead geometry and temperature distribution for the GMA welding process. The equation was solved using a general thermofluid-mechanics computer program, PHOENICS code, which is based on the SIMPLE algorithm. The simulation results showed that the calculated bead geometry from the developed models reasonablely agree with the experiment results.

  • PDF

Fluidized Bed Drying Effect on the Aerogel Powder Synthesis

  • Hong, Seong-Hoon;Lee, Dong-Kyu;Oh, Chang-Sup;Kim, Yong-Ha
    • 에너지공학
    • /
    • 제21권1호
    • /
    • pp.43-46
    • /
    • 2012
  • A fluidized bed drying approach was utilized to the synthesis of water glass based silica aerogel powders. The effects of the fluidized bed drying conditions such as the superficial velocity and temperature of hot air and bead size as well as bead/wet-gel ratio, on the physical properties such as tapping density and productivity of the aerogel powders were systematically investigated. The experimental results showed that the amount of beads mixed with wet-gels in the fluidized bed column has the most profound impact on the fluidization efficiency, greatly enhancing the yield of the aerogel powders up to 98% with a proper bead/wet-gel weight ratio as compared to 72% without using beads. No significant change was observed in the tapping density over a wide range of the fluidized drying condition. Consequently the fluidized bed drying approach shows a good promise as an alternative route for the large-scale production of the aerogel powders.

Study on Core Debris Recriticality During Hypothetical Severe Accidents in Three Element Core Design of The Advanced Neutron Source Reactor

  • Shin, Sung-Tack
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.467-472
    • /
    • 1996
  • This study discusses special aspects of severe accident related recriticality modeling and analysis in the Advanced Neutron Source (ANS) reactor.$^{1, 2)}$ The analytical comparison of three elements core to former two elements case is conducted including evaluation of suitable nuclear cross-section sets to account for the effects of system configulation, fuel and moderator mixture temperature, material dispersion and the other thermal-hydraulics. Three elements core ANS reactor is the alternative core design which was proposed as a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium (former uranium fuel is the baseline design value of 93%) A comprehensive test matrix of calculations to evaluate the threat of a criticality event in the ANS is described. Strong dependencies still on geometry, material constituents, and thermal-hydraulic conditions are verified. Therefore, the concepts of mitigative design features are qualified.d.

  • PDF

성층급기 연소현상에 관한 수치적 연구 (A Numerical Study on Stratified Charge Formation and Combustion Processes)

  • 이석영;허강열
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.86-96
    • /
    • 2007
  • A direct-injection stratified-charge(DISC) engine has been considered as a promising alternative in spite of high unburned hydrocarbon emission levels during light load operation. In this paper investigation is made to characterize formation and combustion processes of stratified mixture charge in a simple constant volume combustion chamber. Both experimental and numerical analyses are performed for fluid and combustion characteristics with 3 different induction types for rich, homogeneous and lean mixture conditions. The commercial code FIRE is applied to the turbulent combustion process in terms of measured and calculated pressure traces and calculated distributions of mean temperature, OH radical and reaction rate. It turns out that the highest combustion rate occurs for the rich state condition at the spark ignition location due to existence of stoichiometric mixture and timing.