• Title/Summary/Keyword: Alternative fuels

Search Result 405, Processing Time 0.025 seconds

Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for a D.I. Diesel Engine(2) (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성(2))

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, lots of researchers have been attracted to develop various alternative fuels in diesel engine. The use of biodiesel fuel(BDF) is an effective way of substituting diesel fuel in the long run. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. In this study, to investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. As a result, shorter ignition delays were observed for the biodiesel blend cases relative to the diesel oil. The pick value of premixed combustion for the rate of heat release is increased with decreasing C.F.W. temperature.

  • PDF

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Trends on Alternative Fuel Vehicles in World-Wide 10 Postal Agencies (해외 우정기관의 친환경 차량 운영 동향)

  • Kim, S.H.;Jung, H.;Lee, I.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.118-134
    • /
    • 2021
  • In this study, we provide trends on alternative fuel vehicles promoted by postal agencies in 10 countries in North America, the EU, and Asia. It describes the specifications of most EV vehicles in operation, plans, and strategies to replace existing internal combustion engines with new vehicles in the future and provides the current status of alternative vehicle charging networks in each postal agency. This paper will help postal agencies, logistics companies, automobile companies, motorcycle companies, and even individuals who want to use vehicles with alternative fuels, such as electric vehicles, on strategies to establish and implement before introducing and operating the vehicles.

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

The Emission Characteristics of Bio-Diesel Fuel in Heavy-Duty Engine (바이오 디젤 적용에 따른 대형엔진의 배출가스 특성)

  • Kim, Sun-Moon;Eom, Myoung-Do;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.499-506
    • /
    • 2010
  • Recently, a great deal of attention have been directed to the use of alternative fuels as a means to reduce vehicular emissions. As one of the promising alternative fuels, bio-diesel has advantages of a wide adaptability without retrofit of diesel engine. It is also effective enough to reduce CO, THC, $SO_x$, polycyclic aromatic hydrocarbons (PAHs) and PM. In this study, we investigated the emission characteristics of biofuels between different operating conditions, i.e., engine speed (1,400 rpm and 2,300 rpm), engine load (10% and 100%), bio-diesel blending (BD0, BD5 and BD20), and recirculation (EGR) rate of exhaust gas (0% and 20%). Relative performance of the system was evaluated mainly for the greenhouse gases ($CH_4$, $N_2O$ and $CO_2$). In addition, emission characteristics of ND-13 mode were also tested against both greenhouse gases and other airborne pollutants under emission regulation. The relative composition of bio-diesel has shown fairly clear effects on the emission quantities of CO, THC, and PM emission, although it was not on $NO_x$ and greenhouse gases. EGR rate has shown trade-off characteristics between $NO_x$ and PM.

An Experimental Study on the Leakage Characteristics and Durability Evaluation of an LPLi Injector (LPLi 인젝터의 누설특성 및 내구평가에 관한 실험적 연구)

  • Choi, Young;Kim, Chang-Up;Oh, Seung-Mook;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.204-210
    • /
    • 2007
  • The worldwide energy problem and global warming cause the need of alternative fuels which feature low carbon-dioxide emission and another energy source. Liquefied Petroleum Gas (LPG) is one of the alternative fuels widely used as domestic and transportational fuel. The third generation LPLi fuel supply system has merits in the increase of engine power and low emissions. The injectors used in LPLi system should overcome a leakage problem and satisfy the durability conditions. Therefore, 1000 hour durability test of the injectors was carried out throughout this research. First, the spray pattern and the penetration length of the selected injectors is graphically shown. Next, the leakage amount with respect to the injection cycle is introduced. Finally, the shapes of nozzle holder and nozzle tip after durability test was investigated by analyzing the microscopic image of the injector tip. The variation in the shape of nozzle tip mainly due to the residue of rubber materials is found to be the reason for leakage.

  • PDF

An Experimental Study on the Combustion and Emission Characteristics of Blends of GTL / Biodiesel in Diesel Engine (GTL/바이오디젤 혼합 연료의 연소 및 배기배출물 특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Yong-Gyu;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.39-45
    • /
    • 2009
  • An experimental research with 2.0 liter 4-cylinder turbocharged diesel engine was carried out to investigate the combustion and emission characteristics for various alternative fuels. The conventional diesel fuel, neat GTL, blends of 80% of GTL and 20% of biodiesel derived from waste cooking oil are utilized without any modification of engine hardware and ECU data. For GTL and blends of GTL/biodiesel fuel, the ignition delay decreased at the same operating conditions, and overall combustion duration increased slightly. Also, the peak cylinder pressure increased for blends of GTL/biodiesel compared to diesel and GTL fuel. THC and CO emissions with blends of GTL/biodiesel compared to other fuels decreased for the low and middle load conditions. But NOx emission increased due to oxygen content in biodiesel. The number concentrations of PM are higher for blends of GTL/biodiesel than other test fuels in the nucleation mode, while it had an opposite tendency in the accumulation mode, which implies more reduction of PM for blends of GTL/biodiesel on the base of mass concentration.

A Comparative Study on the Performance and Emission Analysis of a Dual Fuelled Diesel Engine with Karanja Biodiesel and Natural Gas

  • Singh, Ashish Kumar;Kumar, Naveen;Amardeep, Amardeep;Kumar, Parvesh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • In the present study, a single cylinder four stroke dual fuel diesel engine was tested to investigate the performance and emission characteristics of various test fuels. The engine was tested in dual fuel mode using diesel and Karanja biodiesel blends as pilot fuel along with Natural gas as primary fuel with a constant gas flow rate under different loading conditions. From the experimentation it was found that smoke opacity and oxides of nitrogen (NOx) are at low level for all the prepared test fuels in dual fuel mode but the emissions of carbon monoxide (CO), carbon dioxide ($CO_2$) and hydrocarbon (HC) were found higher. In comparison to diesel fuel, by increasing the blend percentage different emission parameters are found to be reduced. At different loading conditions all the test fuels show poor performance in dual fuel mode of operation when compared with single mode of operation with diesel and biodiesel. With increase in gas flow rates, except (NOx) and smoke emissions, the other emission parameters like CO, HC and $CO_2$ values increased for all test fuels. Again, all blended fuels showed lower performance compared to diesel. The maximum pilot fuel savings for diesel was found decreasing with the increase in karanja biodiesel. From the present work it may be concluded that Karanja biodiesel with Natural gas in dual mode can be can used as promising alternative for diesel with some required engine modifications and further research must be carried out to minimize the emissions of CO, HC and $CO_2$.

A Study on the Characteristics of Torrefaction and Chlorine Release According to the Mild Pyrolysis Temperature Conditions of Biomass Fuels (WP·EFB·PKS) for Power Generation (발전용 바이오매스 연료(WP·EFB·PKS)의 열분해 온도 조건에 따른 반탄화 및 염소 방출 특성에 관한 연구)

  • KIM, JI-HUN;PARK, JAE-HEUN;CHOI, JAE-HYUN;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • Wood pellet (WP), empty fruit bunch (EFB) and palm kernel shell (PKS) which are biomass fuels for power generation are selected to study the characteristics of torrefaction process. These biomass fuels are torrefied at $220^{\circ}C$, $250^{\circ}C$, and $280^{\circ}C$. The heating value of biomass fuels is increased depending on the torrefaction temperature. However, due to energy yield decline, it is not always desirable to torrefy biomass at higher temperature. Considering the mass yield and energy yield after torrefaction, the most proper temperature conditions for torrefaction of WP is $250-280^{\circ}C$ and for EFB, PKS are $220-250^{\circ}C$. Additionally, to investigate the phenomenons of chlorine release during torrefaction process, Ion Chromatography (IC) method was used. In the case of EFB and PKS torrefied at $300^{\circ}C$, the chlorine component has been reduced by 97.5% and 95.3% compared to the raw biomass, respectively. In conclusion, torrefied biomass can be used as alternative fuels in replacement of coals for both aspects of heating value and chlorine corrosion problems.

A Study on Compatibility of Vehicle Using Alternative Fuels (자동차 대체연료의 상호호환성 연구)

  • Lee, Taek-Hee;Kang, Seung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.74-81
    • /
    • 2012
  • The purpose of this study provides the theoretical model for protecting the economic and social loss from the current alternative fuel vehicle which is developed without compatibility and senseless one's own through verifying the statistical significant by method of measuring analysis. The market scale of alternative fuel vehicle depends on customer's and station's expectation about the number of potential vehicle users. It is very difficult for vehicle manufacturer to make a decision on the standard alternative fuel vehicle as it might reduce profit and market share. Accordingly, the development of alternative fuel vehicle should have manufacturer confident on the potential profit in the future. Moreover, if we decide to use the non-standard fuel after we started to use the standard fuel, it would take a huge cost comparing with starting to use the standard fuel only. As a result, once one of companies starts to provide the non-standard fuel service, it is getting more difficult to use the standard fuel going forward. Consequently, we may review the possibility of choice on the standard fuel before the vehicle manufacturer starts service with non-standard fuel.