• Title/Summary/Keyword: Alternative conditions

Search Result 1,598, Processing Time 0.028 seconds

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

A Case Study on the Construction at Near Verge Section of Secure Objects Using Electronic Detonators (전자뇌관을 이용한 보안물건 초근접구간 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hee;Lim, Il-soo;Kim, Jin-soo
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.22-30
    • /
    • 2019
  • On sites where explosives are used, the effects of noise and vibration produced by the blast wave are subject to a number of operational restrictions. Recently, the number of civil complaints has increased and the standard of environmental regulations on secure goods has been greatly tighten. Therefore, work is generally carried out by machine excavation in case of close proximity of safety thing. Machine excavation methods have the advantage as reducing noise and vibration compared to blasting methods, but depending on the conditions of rock intended to be excavated, they are sometimes less constructive than planned. In general, the closer a rock type is to hard rock, the less constructible it becomes. In this paper, we are going to explain the construction of a construction section with a close proximity to a safety thing using electronic detonators. While the project site was designed with a machine excavation methods due to the close(9.9m) proximity of safety thing(the railroad), construction using electronic detonators was reviewed as an alternative method for improving rate of advance time and construction efficiency when expose to hard rock. Through blasting using electronic detonators, construction and economic efficiency were maximized while minimizing impact on surrounding safety things. Because $HiTRONIC^{TM}$, which is produced by Hanwha, has innovative stability and high explosion reliability, it is able to explode with high-precision accuracy. Electronic detonators are widely used in construction sites of railway or highway, other urban burrowing areas and large limestone mines.

Exploring 'Wisdom of Science': Toward Wisdom-Oriented Science Education ('과학의 지혜'에 대한 탐색적 연구 -지혜 지향적 과학교육을 향하여-)

  • Lim, Insook;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.793-812
    • /
    • 2018
  • This study, from a critical view on knowledge-centered science education, aims to explore the wisdom that can be acquired from science. In other words, to find the categories and examples of "Wisdom of Science(WOS)" that can be shared in science classroom is the purpose of this study. For the data collection, twelve hours of physics classes of three high schools were observed, together with teacher interviews and student interviews. Collected data were analyzed qualitatively based on the operational definition of WOS. In this study, WOS was defined in a limited sense to mean 'wise action such as behaviors, attitudes, methods, and thoughts that can be found in the process of formation and application of scientific knowledge'. The results of this study, i.e. three categories and six examples of WOS, can be summarized as follows. First category of WOS is 'wisdom as a scientific attitude'. The examples of this category are 'rational suspicion and open-minded attitude', and 'effort to find the best way in given situation'. Second category of WOS is 'wisdom as a method for problem solving'. The examples of this category are 'thinking with changing the conditions', and 'communication using the language of science'. Third category of WOS is 'wisdom as a reflection about science and human'. The examples of this category are 'understanding of the relationship between science and society', and 'perceiving the relationship between science and my life'. In conclusion, "Wisdom-oriented Science Education" as an alternative goal of future science education is suggested with its meanings and implications.

The Determinants of Port Hinterlands Competitiveness in Korea-China: Focusing on Gwangyang Port and Qingdao Port (한·중 항만배후단지의 경쟁요인 비교분석에 관한 연구: 광양항과 칭다오항을 중심으로)

  • Qing, Cheng lin;Na, Ju Mong
    • International Area Studies Review
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2013
  • This study aims to identify the priority for the Gwangyang and Qingdao hinterlands which are in the same category of benchmarking crowed paths. This study has been mainly done with comparison. There is certain limitation to use competitive factors of existing research so, this study has had proper competitive factors deriving from factors analysis and studied hinterland priority of competing factors by AHP. Major results are as follows. First, the factor analysis resulted in 20 factor that were 0.6 or higher loading level of commonality and then these 20 factors were divided into groups: operating factors, service factors, cost factors, port infrastructure factors, and hinterland conditions factors with the rotated component matrix analysis. Second, according to the result of top competitive factors, the best factor was the hinterland condition(0.256). The other factors such as infrastructure, economy, accessibility, incentive, and port traffic in hinterland were highly ranked in terms of general importance using multiple weights. Third, the result of detailed properties importance about the final alternative, Gwangyang hinterland was considered more highly than Qingdao hinterland in the port information system, the support a variety of administrative services, the efficiency of the customs, and the tax benefits.

Preliminary Evaluation of Domestic Applicability of Deep Borehole Disposal System (심부시추공 처분시스템의 국내적용 가능성 예비 평가)

  • Lee, Jongyoul;Lee, Minsoo;Choi, Heuijoo;Kim, Kyungsu;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.491-505
    • /
    • 2018
  • As an alternative to deep geological disposal technology, which is considered as a reference concept, the domestic applicability of deep borehole disposal technology for high level radioactive waste, including spent fuel, has been preliminarily evaluated. Usually, the environment of deep borehole disposal, at a depth of 3 to 5 km, has more stable geological and geo-hydrological conditions. For this purpose, the characteristics of rock distribution in the domestic area were analyzed and drilling and investigation technologies for deep boreholes with large diameter were evaluated. Based on the results of these analyses, design criteria and requirements for the deep borehole disposal system were reviewed, and preliminary reference concept for a deep borehole disposal system, including disposal container and sealing system meeting the criteria and requirements, was developed. Subsequently, various performance assessments, including thermal stability analysis of the system and simulation of the disposal process, were performed in a 3D graphic disposal environment. With these analysis results, the preliminary evaluation of the domestic applicability of the deep borehole disposal system was performed from various points of view. In summary, due to disposal depth and simplicity, the deep borehole disposal system should bring many safety and economic benefits. However, to reduce uncertainty and to obtain the assent of the regulatory authority, an in-situ demonstration of this technology should be carried out. The current results can be used as input to establish a national high-level radioactive waste management policy. In addition, they may be provided as basic information necessary for stakeholders interested in deep borehole disposal technology.

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application (화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가)

  • Sung, Seounghwa;Lee, Boryeon;Choi, Ook;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.

Effects of Layers of Non-woven Fabric on the Growth and Flowering of Edile Flower Tropaeolum majus L. in the Vertical Greening System for Lower Maintenance Urban Agriculture (저관리 도시농업을 위한 벽면녹화 부직포 처리가 식용꽃인 한련화(Tropaeolum majus L.)의 생육과 개화에 미치는 영향)

  • Park, Jae-Hyeon;Yoon, Young-Han;Lee, Jae-Man;Song, Hee-Yeon;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.545-552
    • /
    • 2019
  • Tropaeolum majus, with a high decorative and food demand for vertical greening systems, has been utilized to revitalize urban agriculture. The effects of number of non-woven fabrics in a non-water environment and the adaptability of T. majus to this system were investigated. Planting ground composition of the container-type wall vertical greening system was made using non-woven fabric in one, two, three, or four layers. The results showed that the soil water content remained the highest when the non-woven fabric comprised 4 sheets. The morphological properties showed more growth with the 4 sheets than with 1, 2, and 3 sheets. In terms of physiological characteristics, chlorophyll content was mostly high in the 4 sheets, while shoot fresh weight value was in the order of 3 > 4 > 2 > 1 sheet, and root fresh weight value was in the order of 4 > 2 > 1 > 3 sheets. The dry weight of the measured values in the shoot was in the order of 4 > 3 > 2 > 1 sheet while no clear difference was found in the root of each treatment. The difference in the flowring characteristics was not different, but in evaluating the characteristics as a whole, the growth in the three layers of non-waven fabric was the best. In addition, the soil moisture contents and the growth characteristics were statistically significant as a positive correlation between the groups. Thus, greater the non-woven fabric, the higher is the adaptability of T. majus to dry stress under soil water-free conditions by maintaining soil moisture content. This showed that it represented an effective alternative as a method of vertical greening system for lower maintenance urban agriculture.

Principle of restoration ecology reflected in the process creating the National Institute of Ecology

  • Kim, A. Reum;Lim, Bong Soon;Seol, Jaewon;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.105-116
    • /
    • 2021
  • Background: The creation of the National Institute of Ecology began as a national alternative project to preserve mudflats instead of constructing the industrial complexes by reclamation, and achieve regional development. On the other hand, at the national level, the research institute for ecology was needed to cope with the worsening conditions for maintaining biodiversity due to accelerated climate change such as global warming and increased demand for development. In order to meet these needs, the National Institute of Ecology has the following objectives: (1) carries out studies for ecosystem change due to climate change and biodiversity conservation, (2) performs ecological education to the public through exhibition of various ecosystem models, and (3) promotes regional development through the ecological industry. Furthermore, to achieve these objectives, the National Institute of Ecology thoroughly followed the basic principles of ecology, especially restoration ecology, in the process of its construction. We introduce the principles and cases of ecological restoration applied in the process. Results: We minimized the impact on the ecosystem in order to harmonize with the surrounding environment in all the processes of construction. We pursued passive restoration following the principle of ecological restoration as a process of assisting the recovery of an ecosystem degraded for all the space except in land where artificial facilities were introduced. Reference information was applied thoroughly in the process of active restoration to create biome around the world, Korean peninsula forests, and wetland ecosystems. In order to realize true restoration, we pursued the ecological restoration in a landscape level as the follows. We moved the local road 6 and high-voltage power lines to underground to ensure ecological connectivity within the National Institute of Ecology campus. To enhance ecological diversity, we introduced perch poles and islands as well as floating leaved, emerged, wetland, and riparian plants in wetlands and mantle communities around the forests of the Korean Peninsula in the terrestrial ecosystem. Furthermore, in order to make the public aware of the importance of the intact nature, the low-lying landscape elements, which have disappeared due to excessive land use in most areas of Korea, was created by imitating demilitarized zone (DMZ) landscape that has these landscape elements. Conclusions: The National Institute of Ecology was created in an eco-friendly way by thoroughly reflecting the principles of ecology to suit its status and thus the impact on the existing ecosystem was minimized. This concept was also designed to be reflected in the process of operation. The results have become real, and a result of analysis on carbon budget analysis is approaching the carbon neutrality.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Seismic Performance Evaluation of Concrete Anchors used in Power Plant Equipment by Shaking Table Tests (진동대 실험을 통한 발전기기용 콘크리트 앵커의 성능평가)

  • Lee, Sang-Moon;Jeon, Bub-Gyu;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • The main purpose of this study is to assess the safety of the fixed anchorages subjected to the seismic motion for an operating facilities in the actual power plant. Thus, the experimental study was conducted to investigate the load response in the event of an actual seismic to the anchorages of a nonstructural components. Since there are economic and spatial constraints to study nonstructural components that actually have various forms, alternative test specimens of steel frames with mass were built and the shaking table test was carried out. In order to evaluate the dynamic characteristics and seismic performance, the natural frequency of the target structure was identified through the shaking table test and then the load response characteristics of the anchorage were evaluated by generating an artificial seismic effect like actual seismic. Finally, the structural stiffness was reinforced by fixing the steel frame to the test specimen using bolts, thereby reducing the load transmitted to the anchorage. It will be carried out on the reliability verification of the experiments and areas that have not been carried out due to the site conditions through the analytical approach in the future.