• Title/Summary/Keyword: Alternative Carbon Source

Search Result 103, Processing Time 0.021 seconds

Biogas Reforming through Microwave Receptor Heating (마이크로웨이브 수용체 가열을 통한 바이오가스 개질)

  • Young Nam Chun;June An
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.126-134
    • /
    • 2024
  • Biogas, composed mainly of methane (CH4) and carbon dioxide (CO2), is a renewable gas that can serve as an alternative energy source. In this study, we developed a new microwave reformer and analyzed its reforming characteristics. We observed that higher temperatures of the microwave receptor led to increased reforming efficiency. By supplying appropriate amounts of methane and steam, we could prevent carbon generated from the thermal decomposition reaction of carbon dioxide from depositing on the catalytic active layer, thus avoiding the inhibition of catalytic activity. Hydrogen generation was enhanced when maintaining the biogas ratio and steam supply at adequate levels. Increasing the SiC ratio in the receptor improved the uniformity of temperature distribution and growth rate, resulting in higher conversion rates of the reforming process.

An experimental study on decision making for multi-source water (다중수원 수처리 의사결정에 관한 실험적 연구)

  • Jung, Jungwoo;Cho, Hyeong-Rak;Lee, Sangho;Chae, Soo-Kwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.

Submerged Culture Conditions for the Production of Alternative Natural Colorants by a New Isolated Penicillium purpurogenum DPUA 1275

  • Santos-Ebinuma, Valeria Carvalho;Teixeira, Maria Francisca Simas;Pessoa, Adalberto Jr.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.802-810
    • /
    • 2013
  • This work aims at investigating the production of yellow, orange, and red natural colorants in a submerged culture of Penicillium purpurogenum DPUA 1275. For this purpose, different experimental conditions evaluating the effect of incubation time, type and size of inoculum, and different carbon and nitrogen sources were performed. Furthermore, the growth kinetics were obtained in the conditions of $10^8$ spores/ml and 5 mycelia agar discs during 360 h. These experiments showed that 5 mycelia agar discs and 336 h promoted the highest yellow (3.08 $UA_{400nm}$), orange (1.44 $UA_{470nm}$), and red (2.27 $UA_{490nm}$) colorants production. Moreover, sucrose and yeast extract were the most suitable carbon and nitrogen sources for natural colorants production. Thus, the present study shows a new source of natural colorants, which can be used as an alternative to others available in the market after toxicological studies.

Metagenome Resource for D-Serine Utilization in a DsdA-Disrupted Escherichia coli

  • Lim, Mi-Young;Lee, Hyo-Jeong;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • To find alternative genetic resources for D-serine dehydratase (E.C. 4.3.1.18, dsdA) mediating the deamination of D-serine into pyruvate, metagenomic libraries were screened. The chromosomal dsdA gene of a wild-type Escherichia coli W3110 strain was disrupted by inserting the tetracycline resistance gene (tet), using double-crossover, for use as a screening host. The W3110 dsdA::tet strain was not able to grow in a medium containing D-serine as a sole carbon source, whereas wild-type W3110 and the complement W3110 dsdA::tet strain containing a dsdA-expression plasmid were able to grow. After introducing metagenome libraries into the screening host, a strain containing a 40-kb DNA fragment obtained from the metagenomic souce derived from a compost was selected based on its capability to grow on the agar plate containing D-serine as a sole carbon source. For identification of the genetic resource responsible for the D-serine degrading capability, transposon-${\mu}$ was randomly inserted into the 40-kb metagenome. Two strains that had lost their D-serine degrading ability were negatively selected, and the two 6-kb contigs responsible for the D-serine degrading capability were sequenced and deposited (GenBank code: HQ829474.1 and HQ829475.1). Therefore, new alternative genetic resources for D-serine dehydratase was found from the metagenomic resource, and the corresponding ORFs are discussed.

Removing Nitrate from Groundwater by Biofilm Filtration (생물막 여과에 의한 지하수중 질산성 질소의 제거)

  • Lee, Yong-Doo;Ko, In-Beom
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.83-89
    • /
    • 1998
  • The drinking water supply in Cheju entirely depends on the ground water and recently the polluted ground water bores are increasing. In 1993 Cheju Province Health-Environment Institute reported that the ground water quality of 26 of 98 bores under the drinking water quality standard. Therefore there are many investigation in the needs of the nitrate removal in the drinking water in the regin with no alternative water resources. In this study, the following results are obtained to remove the nitrate in biofilm filtration process in which uses ethanol as external carbon source. Over 90% of nitrate is removed after 10 days of experiment. The nitrate removal rate on filtration velocity is about 100% at 50m/day and 100m/day, and about 56% at 200m/day. The removal rate is reduced in 27% at 400m/day. Using ethanol as the external carbon source, denitrification kinetic is 1st-order. Denitrification constant k is 8.004($hr^{-1}$). The amount of the denitrificated-Nitrogen is increased as the contact time increased. Deoxydation rate constant ${\gamma}$ is 11.895($hr^{-1}$). 0.968g of ethanol(as TOC) is needed to remove 1g of nitrate and 0.291g is required to remove 1g of dissolved oxygen.

  • PDF

Effect of DLC Coating-layer on Engine Wear Characteristics for Improving Fuel Consumption of Automotive Engine (차량연비 향상을 위한 DLC 코팅 층이 엔진 마모특성에 미치는 영향)

  • Kim, Kee-Joo;Yoo, Seok-Jong;Choi, Byung-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.112-119
    • /
    • 2010
  • Recently, as the matters of environmental pollution, the energy exhaustion and alternative energy source have become more important issues, around industrial countries and the effort to improve fuel consumption is progressed continuously for decrease of air pollution. In an effort to improve fuel consumption for passenger cars, the study of DLC (Diamond Like Carbon) coating which is widely known to good wear characteristics come to the forefront. Therefore, in present study, it was investigated to the influence of DLC coating layer for wear characteristics with the piston ring material and then suggested to the development process for advanced automotive engine parts that showed improved wear characteristics. From these results, Finally, it will be contributed to improve the fuel consumption for passenger vehicles.

Comparison of hemocytic carbonic anhydrase activity of bivalves

  • Cho, Sang-Man;Jeong, Woo-Geon;Choi, Young-Joon
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.63-65
    • /
    • 2016
  • Carbonic anhydrase (CA), which is involved in shell formation processes in bivalves, is one of the major biocatalysts for carbon capture and storage. In this study we investigated CA activity in the total hemocytic proteins of five bivalves. The highest CA activity was observed in Scapharca broughtonii, which had more than twice the activity found in Crassostrea gigas. No CA activity was observed among the total hemocytic proteins of Pinctada fucata and Saxidomus purpuratus. The results suggest that marine invertebrates may provide a better source of CA, as an alternative to mammalian sources.

Sustainable Environmental Science & Recycling Technology Education for High School and Middle Schools: Global Scenario

  • Thenepalli, Thriveni;Chilakala, Ramakrsihna;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.45-48
    • /
    • 2019
  • Currently, the global atmosphere around the world is altering at a very rapid pace. Among those changes, some are beneficial, but most of the changes are lead to destruction to our planet. The area of environmental science is a significant resource for learning more about these changes. Due to the urbanization, the human population is increasing, natural resources becoming very limited. To solve the limited resources issues, recycling is absolutely an alternative source for the new demands and limitations. Recycling education is very important to raise awareness among students and their communities about the need for recycling and what materials are recyclable locally. In this paper, we reported the role of sustainability science and technology and the impact of recycling research education in the middle schools, both in developing countries and Asian countries and also we included the brief data of global recycling of waste.

Production of Biomass and Lipid Using Microalga Nannochloris oculata Under Different Conditions of Nitrogen and Irradiance (미세조류 Nannochloris oculata의 성장과 지질 생산에 미치는 질소 농도와 광량의 영향)

  • Park, Sang-Jin;Choi, Yoon-E;Kim, Chul-Woong;Park, Won-Kun;Yang, Ji-Won
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.553-558
    • /
    • 2010
  • Increasing demands on fossil fuel have led to the unprecedented attraction to microalgal biofuel as an alternative energy. In this study, we investigated growth and lipid productions of microalga Nannochloris oculata under various carbon dioxide or nitrogen source concentrations and irradiance conditions. Biomass production of N. oculata was highest under 2% $CO_2$ with 0.3 flow rate (vvm). In addition, biomass productivities were proportional to the concentration of nitrogen source, whereas lipid biosynthesis was suppressed under higher nitrogen concentration (up to 50 mg/L). High irradiation ($160{\sim}180\;{\mu}mol/m^2{\cdot}s$) enhanced growth rate and lipid production of N. oculata.